DOI QR코드

DOI QR Code

Numerical study of direct contact membrane distillation process: Effects of operating parameters on TPC and thermal efficiency

  • Zamaniasl, Mohammadmehdi (Department of Mechanical Engineering, College of Engineering, Shahid Chamran University of Ahvaz)
  • Received : 2019.03.09
  • Accepted : 2019.06.27
  • Published : 2019.09.25

Abstract

Membrane distillation (MD) is one of the water treatment processes which involves the momentum, heat and mass transfer through channels and membrane. In this study, CFD modeling has been used to simulate the heat and mass transfer in the direct contact membrane distillation (DCMD). Also, the effect of operating parameters on the water flux is investigated. The result shows a good agreement with the experimental result. Results indicated that, while feed temperature is increasing in the feed side, water flux improves in the permeate side. Since higher velocity leads to the higher mixing and turbulence in the feed channel, water flux rises due to this increase in the feed velocity. Moreover, results revealed that temperature polarization coefficient is rising as flow rate (velocity) increases and it is decreasing while the feed temperature increases. Lastly, the thermal efficiency of direct contact membrane distillation is defined, and results confirm that thermal efficiency improves while feed temperature increases. Also, flow rate increment results in enhancement of thermal efficiency.

Keywords

References

  1. Abdel-Rahman, A. (2008), "Modeling Temperature and Salt Concentration Distribution in Direct Contact Membrane Distillation", Faculty.Ksu.Edu.Sa 36(5): 1167-88. http://faculty.ksu.edu.sa/72005/Papers of Interest Water/Modeling Temperature and Salt Concentration Distribution.pdf.
  2. Ali, A., Macedonio, F., Drioli, E., Aljlil, S., & Alharbi, O. A. (2013), "Experimental and Theoretical Evaluation of Temperature Polarization Phenomenon in Direct Contact Membrane Distillation", Chem. Eng. Res. Design, 91(10), 1966-1977. http://dx.doi.org/10.1016/j.cherd.2013.06.030.
  3. Alsaadi, A.S., Ghaffour, N., Li, J.D., Gray, S., Francis, L., Maab, H., and Amy, G.L. (2013), "Modeling of air-gap membrane distillation process : A theoretical and experimental study", J. Membr. Sci., 445, 53-65. https://doi.org/10.1016/j.memsci.2013.05.049.
  4. Bahrami, M., Karimi-Sabet, J., Hatamnejad, A., Dastbaz, A., & Moosavian, M.A. (2018), "Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; Application of response surface methodology and morphology study", Korean J. Chem., Eng., 35(11), 2241-2255. https://doi.org/10.1007/s11814-018-0038-4.
  5. Chang, H., Ho, C.D. and Hsu, J.A. (2016), "Analysis of heat transfer coefficients in direct contact membrane distillation modules using CFD simulation", J. Appl. Sci. Eng., 19(2), 197-206.
  6. Hwang, H.J., He, K., Gray, S., Zhang, J. and Moon, I.S. (2011), "Direct Contact Membrane Distillation (DCMD): Experimental Study on the Commercial PTFE Membrane and Modeling", J. Membr. Sci., 371(1-2), 90-98. https://doi.org/10.1016/j.memsci.2011.01.020.
  7. Janajreh, I., El Kadi, K., Hashaikeh, R. and Ahmed, R. (2017), "Numerical investigation of air gap membrane distillation (AGMD): Seeking optimal performance", Desalination 424(October), 122-130. http://doi.org/10.1016/j.desal.2017.10.001.
  8. Khalifa, A., Ahmad, H., Antar, M., Laoui, T. and Khayet, M. (2017), "Experimental and theoretical investigations on water desalination using direct contact membrane distillation", Desalination 404, 22-34. http://doi.org/10.1016/j.desal.2016.10.009.
  9. Khayet, M., Cojocaru, C. and Baroudi, A. (2012), "Modeling and optimization of sweeping gas membrane distillation modeling and optimization of sweeping gas membrane distillation", Desalination 287(February), 159-166. http://doi.org/10.1016/j.desal.2011.04.070.
  10. Khayet, Mohamed (2011), "Membranes and theoretical modeling of membrane distillation : A review", Adv. Colloid Interface Sci. 164(1-2), 56-88. http://dx.doi.org/10.1016/j.cis.2010.09.005.
  11. Li, Z., Rana, D., Wang, Z., Matsuura, T. and Lan, C.Q. (2018), "Synergic effects of hydrophilic and hydrophobic nanoparticles on performance of nanocomposite distillation membranes : An experimental and numerical study", Separation Purification Technol., 202, 45-58. https://doi.org/10.1016/j.seppur.2018.03.032.
  12. Qtaishat, M., Matsuura, T., Kruczek, B. and Khayet, M. (2008), "Heat and mass transfer analysis in direct contact membrane distillation", Desalination, 219(1-3), 272-292. https://doi.org/10.1016/j.desal.2007.05.019.
  13. Rana, D., Yang, Y., Matsuura, T. and Lan, C.Q. (2016), "The heat and mass transfer of vacuum membrane distillation: Effect of active layer morphology with and without support material", Separation Purification Technol., 164, 56-62. http://dx.doi.org/10.1016/j.seppur.2016.03.023.
  14. Salem, M. S., El-shazly, A. H., Nady, N., Elmarghany, M. R., Shouman, M. A. and Sabry, M. N. (2019), "33-D numerical investigation on commercial PTFE membranes for membrane distillation: Effect of inlet conditions on heat and mass transfer", Case Studies Thermal Eng., 13, https://linkinghub.elsevier.com/retrieve/pii/S2214157X18304210.
  15. Srisurichan, S., Ratana J. and Fane, A.G. (2006), "Mass transfer mechanisms and transport resistances in direct contact membrane distillation process", 277, 186-194. https://doi.org/10.1016/j.memsci.2005.10.028.
  16. Lawal, D. U. and Khalifa, A. E. (2014), "Flux prediction in direct contact membrane distillation", J. Mater., Mech. Manufact., 2(4), 302-308.www.ijmmm.org/index.php?m=content&c=index&a=show&catid=33&id=182.
  17. Upadhyaya, S., Singh, K., Chaurasia, S.P. and Dohare, R.K. (2015), "Mathematical and CFD modeling of vacuum membrane distillation for desalination", Desalination Water Treat., 57(May 2016-26), 37-41. https://doi.org/10.1080/19443994.2015.1048306.
  18. Yang, X., Yu, H., Wang, R. and Fane, A.G. (2012), "Optimization of microstructured hollow fiber design for membrane distillation applications using CFD modeling", J. Membr. Sci., 421-422, 258-270. http://doi.org/10.1016/j.memsci.2012.07.022.
  19. Yazgan-birgi, P., Hassan, M.I. and Arafat, H.A. (2018), "Comparative performance assessment of flat sheet and hollow fiber DCMD processes using CFD modeling separation and purification technology comparative performance assessment of flat sheet and hollow fiber DCMD processes using CFD modeling", Separation Purification Technol., 212(November): 709-722. https://doi.org/10.1016/j.seppur.2018.11.085.
  20. Yu, H., Yang, X., Wang, R. and Fane, A.G. (2011), "Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow", J. Membr. Sci., 384(1-2), 107-116. http://doi.org/10.1016/j.memsci.2011.09.011.
  21. Zahirifar, J., Karimi-Sabet, J., Moosavian, S. M. A., Hadi, A. and Khadiv-Parsi, P. (2018), "Fabrication of a novel octadecylamine functionalized graphene oxide/PVDF dual-layer flat sheet membrane for desalination via air gap membrane distillation", Desalination, 428(May 2017), 227-239. https://doi.org/10.1016/j.desal.2017.11.028.