Browse > Article
http://dx.doi.org/10.12989/mwt.2019.10.5.387

Numerical study of direct contact membrane distillation process: Effects of operating parameters on TPC and thermal efficiency  

Zamaniasl, Mohammadmehdi (Department of Mechanical Engineering, College of Engineering, Shahid Chamran University of Ahvaz)
Publication Information
Membrane and Water Treatment / v.10, no.5, 2019 , pp. 387-394 More about this Journal
Abstract
Membrane distillation (MD) is one of the water treatment processes which involves the momentum, heat and mass transfer through channels and membrane. In this study, CFD modeling has been used to simulate the heat and mass transfer in the direct contact membrane distillation (DCMD). Also, the effect of operating parameters on the water flux is investigated. The result shows a good agreement with the experimental result. Results indicated that, while feed temperature is increasing in the feed side, water flux improves in the permeate side. Since higher velocity leads to the higher mixing and turbulence in the feed channel, water flux rises due to this increase in the feed velocity. Moreover, results revealed that temperature polarization coefficient is rising as flow rate (velocity) increases and it is decreasing while the feed temperature increases. Lastly, the thermal efficiency of direct contact membrane distillation is defined, and results confirm that thermal efficiency improves while feed temperature increases. Also, flow rate increment results in enhancement of thermal efficiency.
Keywords
computational fluid dynamic (CFD); heat transfer; water flux; temperature polarization coefficient (TPC); thermal efficiency; membrane distillation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abdel-Rahman, A. (2008), "Modeling Temperature and Salt Concentration Distribution in Direct Contact Membrane Distillation", Faculty.Ksu.Edu.Sa 36(5): 1167-88. http://faculty.ksu.edu.sa/72005/Papers of Interest Water/Modeling Temperature and Salt Concentration Distribution.pdf.
2 Ali, A., Macedonio, F., Drioli, E., Aljlil, S., & Alharbi, O. A. (2013), "Experimental and Theoretical Evaluation of Temperature Polarization Phenomenon in Direct Contact Membrane Distillation", Chem. Eng. Res. Design, 91(10), 1966-1977. http://dx.doi.org/10.1016/j.cherd.2013.06.030.   DOI
3 Alsaadi, A.S., Ghaffour, N., Li, J.D., Gray, S., Francis, L., Maab, H., and Amy, G.L. (2013), "Modeling of air-gap membrane distillation process : A theoretical and experimental study", J. Membr. Sci., 445, 53-65. https://doi.org/10.1016/j.memsci.2013.05.049.   DOI
4 Bahrami, M., Karimi-Sabet, J., Hatamnejad, A., Dastbaz, A., & Moosavian, M.A. (2018), "Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; Application of response surface methodology and morphology study", Korean J. Chem., Eng., 35(11), 2241-2255. https://doi.org/10.1007/s11814-018-0038-4.   DOI
5 Chang, H., Ho, C.D. and Hsu, J.A. (2016), "Analysis of heat transfer coefficients in direct contact membrane distillation modules using CFD simulation", J. Appl. Sci. Eng., 19(2), 197-206.
6 Hwang, H.J., He, K., Gray, S., Zhang, J. and Moon, I.S. (2011), "Direct Contact Membrane Distillation (DCMD): Experimental Study on the Commercial PTFE Membrane and Modeling", J. Membr. Sci., 371(1-2), 90-98. https://doi.org/10.1016/j.memsci.2011.01.020.   DOI
7 Janajreh, I., El Kadi, K., Hashaikeh, R. and Ahmed, R. (2017), "Numerical investigation of air gap membrane distillation (AGMD): Seeking optimal performance", Desalination 424(October), 122-130. http://doi.org/10.1016/j.desal.2017.10.001.   DOI
8 Khalifa, A., Ahmad, H., Antar, M., Laoui, T. and Khayet, M. (2017), "Experimental and theoretical investigations on water desalination using direct contact membrane distillation", Desalination 404, 22-34. http://doi.org/10.1016/j.desal.2016.10.009.   DOI
9 Khayet, M., Cojocaru, C. and Baroudi, A. (2012), "Modeling and optimization of sweeping gas membrane distillation modeling and optimization of sweeping gas membrane distillation", Desalination 287(February), 159-166. http://doi.org/10.1016/j.desal.2011.04.070.   DOI
10 Khayet, Mohamed (2011), "Membranes and theoretical modeling of membrane distillation : A review", Adv. Colloid Interface Sci. 164(1-2), 56-88. http://dx.doi.org/10.1016/j.cis.2010.09.005.   DOI
11 Li, Z., Rana, D., Wang, Z., Matsuura, T. and Lan, C.Q. (2018), "Synergic effects of hydrophilic and hydrophobic nanoparticles on performance of nanocomposite distillation membranes : An experimental and numerical study", Separation Purification Technol., 202, 45-58. https://doi.org/10.1016/j.seppur.2018.03.032.   DOI
12 Qtaishat, M., Matsuura, T., Kruczek, B. and Khayet, M. (2008), "Heat and mass transfer analysis in direct contact membrane distillation", Desalination, 219(1-3), 272-292. https://doi.org/10.1016/j.desal.2007.05.019.   DOI
13 Rana, D., Yang, Y., Matsuura, T. and Lan, C.Q. (2016), "The heat and mass transfer of vacuum membrane distillation: Effect of active layer morphology with and without support material", Separation Purification Technol., 164, 56-62. http://dx.doi.org/10.1016/j.seppur.2016.03.023.   DOI
14 Upadhyaya, S., Singh, K., Chaurasia, S.P. and Dohare, R.K. (2015), "Mathematical and CFD modeling of vacuum membrane distillation for desalination", Desalination Water Treat., 57(May 2016-26), 37-41. https://doi.org/10.1080/19443994.2015.1048306.
15 Salem, M. S., El-shazly, A. H., Nady, N., Elmarghany, M. R., Shouman, M. A. and Sabry, M. N. (2019), "33-D numerical investigation on commercial PTFE membranes for membrane distillation: Effect of inlet conditions on heat and mass transfer", Case Studies Thermal Eng., 13, https://linkinghub.elsevier.com/retrieve/pii/S2214157X18304210.
16 Srisurichan, S., Ratana J. and Fane, A.G. (2006), "Mass transfer mechanisms and transport resistances in direct contact membrane distillation process", 277, 186-194. https://doi.org/10.1016/j.memsci.2005.10.028.   DOI
17 Lawal, D. U. and Khalifa, A. E. (2014), "Flux prediction in direct contact membrane distillation", J. Mater., Mech. Manufact., 2(4), 302-308.www.ijmmm.org/index.php?m=content&c=index&a=show&catid=33&id=182.
18 Yang, X., Yu, H., Wang, R. and Fane, A.G. (2012), "Optimization of microstructured hollow fiber design for membrane distillation applications using CFD modeling", J. Membr. Sci., 421-422, 258-270. http://doi.org/10.1016/j.memsci.2012.07.022.   DOI
19 Yazgan-birgi, P., Hassan, M.I. and Arafat, H.A. (2018), "Comparative performance assessment of flat sheet and hollow fiber DCMD processes using CFD modeling separation and purification technology comparative performance assessment of flat sheet and hollow fiber DCMD processes using CFD modeling", Separation Purification Technol., 212(November): 709-722. https://doi.org/10.1016/j.seppur.2018.11.085.   DOI
20 Yu, H., Yang, X., Wang, R. and Fane, A.G. (2011), "Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow", J. Membr. Sci., 384(1-2), 107-116. http://doi.org/10.1016/j.memsci.2011.09.011.   DOI
21 Zahirifar, J., Karimi-Sabet, J., Moosavian, S. M. A., Hadi, A. and Khadiv-Parsi, P. (2018), "Fabrication of a novel octadecylamine functionalized graphene oxide/PVDF dual-layer flat sheet membrane for desalination via air gap membrane distillation", Desalination, 428(May 2017), 227-239. https://doi.org/10.1016/j.desal.2017.11.028.   DOI