• Title/Summary/Keyword: Flux treatment

Search Result 750, Processing Time 0.027 seconds

Ranking and comparison of draw solutes in a forward osmosis process

  • Sudeeptha, G.;Thalla, Arun Kumar
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.411-421
    • /
    • 2017
  • Forward osmosis (FO) is an emerging technology which can possibly make the desalination process more cost and energy efficient. One of the major factors impeding its growth is the lack of an appropriate draw solute. The present study deals with the identification of potential draw solutes, and rank them. The comparison was carried out among ten draw solutes on the basis of four main parameters namely; water flux, reverse salt diffusion, flux recovery and cost. Each draw solute was given three 24 hour runs; corresponding to three different concentrations; and their flux and reverse salt diffusion values were calculated. A fresh membrane was used every time except for the fourth time which was the flux recovery experiment conducted for the lowest concentration and the change of flux and reverse salt diffusion values from the initial run was noted. The organic solutes inspected were urea and tartaric acid which showed appreciable values in other parameters viz. reverse salt diffusion, flux recovery and cost although they generated a lower flux. They ranked 5th and 8th respectively. All the experimented draw solutes were ranked based on their values corresponding to each of the four main parameters chosen for comparison and Ammonium sulfate was found to be the best draw solute.

Performance Evaluations of a Novel Prototype of High Frequency Non-Contact Power Transformer

  • Gamage, Laknath;Ishitobi, Manabu;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.12-17
    • /
    • 2004
  • In this paper, a practical implementation to reduce leakage flux of a high-frequency inverter based non-contact type power transformer composed of EE-shape ferrite cores is presented for key technology of the next generation medical use X-ray CT scanner system. Design consideration for the unique structure of the non-contact power transformer with 900mm in diameter is also introduced. The complete non-contact transformer is actually arranged by several blocks of the magnetic circuit assembled by using 10 small EE shape cores with 120mm in length. It is experimentally and analytically discussed from a reduced leakage flux viewpoint related to its inductively coupling coefficient. A practical method to lower the leakage flux is described based on effective Copper-Sheet- Treatment placed on EE shape ferrite cores of magnetic circuit.

Epithermal Neutron Flux Enhancement Using SMA in Designing a Cf-Based Neutron Beam for BNCT

  • Kim, Do-Heon;Kim, Jong-Kyung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.937-942
    • /
    • 1995
  • Great interest has prompted Boron Neutron Capture Therapy (BNCT) as a new treatment for brain tumors. The use of $^{252}$Cf as a neutron source for BNn makes the in-hospital treatments of tumors to be possible. Newly proposed subcritical multiplying assemblies (SMA) are explored to improve relatively tow neutron fluxes of the source and construct the feasibilities of $^{252}$Cf as a neutron source. The MCNP code has been used to evaluate the effective multiplication factor of the entire system and the intensities and percentages of epithermal neutron flux at the patient-end surface of the system. The neutron beam using SMA shows the epithermal neutron flux enhancement of about 13 times as large as the beam without using SMA. It is expected that the neutron beam proposed in this research will be more effective for treatment of tumors due to the increased therapeutic neutron fluxes.

  • PDF

A Study on Optimization of Manufacture Conditions for Water Treatment Membrane by Using Electrospinning Method (전기방사법을 이용한 수처리용 막 제조 조건 최적화 연구)

  • Lee, Sang Hyun;Choi, Sung Yeol;Chang, Soon Woong;Kim, Sung Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.456-461
    • /
    • 2017
  • In this study, nano fibers with various physical properties were materialized by using a variety of polymers [PAN (Polyacrylonitrile), PU (Polyuretane), PSU (Polysulfone)] which are raw materials of dope solution manufactured for electrospinning and solvents [NMP (N-methyl-2 pyrrolidone), DMF (Dimethylformamide)] and evaluated characteristics of their flux and SS (Suspended Solids) separation and then ascertained application of manufactured fibers as separation membrane for water treatment. In this study, analysis of surface of manufactured material was carried out through SEM analysis to ascertain the cause of flux and SS separation performance by checking diameter, uniformity and straightness of fiber. If additive is used in manufacturing nano fiber water treatment separation membrane, it is expected to solve problems such as membrane fouling and mechanical strength and to be used as basic factor for manufacturing separation membrane with catalyst function added.

Experimental Study on Minimum Heat Flux Point of Liquid Film Flow (액막류의 MHF 점에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.208-213
    • /
    • 2001
  • The minimum heat flux conditions are experimentally investigated for the subcooled liquid film flow on the horizontal plate. The experimental results show that the minimum heat flux point temperature becomes higher with the increase of the velocity and the subcooling of the liquid film flow. However, the effect of distance from the leading edge of the heat transfer plate on the minimum heat flux is almost negligible. Also, the experimental results show that the propagation velocity of wetting front increase with increasing the velocity and the subcooling of the liquid film flow.

  • PDF

COMPARISON OF THE TREATMENTS OF TURBULENT HEAT FLUX FOR NATURAL CONVECTION WITH THE ELLIPTIC BLENDING SECOND MOMENT CLOSURE (Ellipting Blending Model을 사용하여 자연대류 해석 시 난류 열유속 처리법 비교)

  • Choi, Seok-Ki;Kim, Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.171-176
    • /
    • 2007
  • A comparative study on the treatment of the turbulent heat flux with the elliptic mlending second moment closure for a natural convection is performed. Four cases of different treating the turbulent heat flux are considered. Those are the generalized gradient diffusion hypothesis (GGDH) the algebraic flux model (AFM) and the differential heat flux model (DFM). These models are implemented in the computer code specially designed for evaluation of turbulent models. Calculations are performed for a turbulent natural convection in the 1:5 rectangular cavity and the calculated results are compared with the experimental data. The results show that three models produce nearly the same accuracy of solutions.

  • PDF

Magnetic Properties of Ferroxplana Prepared by Flux Method (용융염법으로 제조된 Ferroxplana 자기적 특성)

  • 김근수;박효열;김태옥
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.453-459
    • /
    • 2004
  • In this experiment, flux method was applied for preparing ferroxplana at low temperature, The common salt was used as a flux. The mole ratio of flux to Zn$_2$Y was varied with 0, 6.5, 13, 26 and 52 in dry ball-mixing. Zn$_2$Y was obtained after heat treatment of the mixed powder. Crystallization, particle morphology and magnetic properties of the prepared powder were investigated using XRD, VSM and SEM. The ferroxplana powder of 2-4 ${\mu}{\textrm}{m}$ was obtained with the mole ratio 26 by heat treating at the temperature of 110$0^{\circ}C$. The coercivity(H$_{c}$) and saturation magnetization(M$_{s}$) of the ferroxplana were 282Oe and 64.5emu/g, respectively.y.y.

Membrane distillation of power plant cooling tower blowdown water

  • Ince, Elif;Uslu, Yasin Abdullah
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.321-330
    • /
    • 2019
  • The objective of this study was to examine the recovery of the power plant cooling tower blowdown water (CTBD) by membrane distillation. The experiments were carried out using a flat plate poly vinylidene fluoride (PVDF) membrane with a pore diameter of $0.22{\mu}m$ by a direct contact membrane distillation unit (DCMD). The effects of operating parameters such as transmembrane temperature difference (${\Delta}T$), circulation rate and operating time on permeate flux and membrane fouling have been investigated. The results indicated that permeate flux increased with increasing ${\Delta}T$ and circulation rate. Whereas maximum permeate flux was determined as $47.4L/m^2{\cdot}h$ at ${\Delta}T$ of $50^{\circ}C$ for all short term experiments, minimum permeate flux was determined as $7.7L/m^2{\cdot}h$ at ${\Delta}T$ of $20^{\circ}C$. While $40^{\circ}C$ was determined as the optimum ${\Delta}T$ in long term experiments. Inorganic and non-volatile substances caused fouling in the membranes.

Advanced Water Treatment by Tubular Alumina Ceramic Ultrafiltration: Effect of Periodic Water-back-flushing Period

  • Park, Jin-Yong;Lee, Song-Hui
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.15-20
    • /
    • 2009
  • The periodic water-back-flushing using permeate water was performed to minimize membrane fouling and to enhance permeate flux in tubular ceramic ultrafiltration (UF) system for Gongji stream water treatment in Chuncheon city. The filtration time (FT), which was the water-back-flushing period, 2 min with periodic 15 sec water-back-flushing showed the highest value of dimensionless permeate flux ($J/J_o$), and the lowest value of resistance of membrane fouling ($R_f$), and we acquired the highest total permeate volume ($V_T$) of 6.35 L. Consequently FT 2 min at back-flushing time (BT) 15 sec could be the optimal condition in advanced UF water treatment of Gongji stream. Then the average rejection rates of pollutants by our tubular ceramic UF system were 99.4% for Turbidity, 31.8% for $COD_{Mn}$, 22.6% for $NH_3$-N and 65.9% for T-P.

Characteristics of Crossflow Electro-microfiltration Process for Treatment of Oily Waste Water (오일함유 폐수 처리를 위한 전기정밀여과 공정 특성)

  • 최왕규;이재원;이근우
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.216-225
    • /
    • 2002
  • Experimental study on the crossflow electro-microfi1tation of simulated oil emulsion waste water was carried out with polypropylene microfiltration membrane to evaluate the applicability of electrofiltration process in the treatment of oily waste water generated from many industries including nuclear field. The effects of electric field strength transmembrane pressure, crossflow velocity, and oil emulsion concentration on the permeate flux were investigated. In electro-microfiltration process using the external electric field, significant enhancement of permeate flux was achieved by diminishing membrane fouling and it was shown that considerable permeate flux can be maintained for long-term operation compared with conventional membrane filtration process without an electric field.