• Title/Summary/Keyword: Flux enhancement

Search Result 254, Processing Time 0.026 seconds

Metabolic Engineering of the Thermophilic Bacteria, Bacillus stearothermophilus, for Ethanol Production

  • Jo, Gwang-Myeong;Ingram, Lonnie O.
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.56-59
    • /
    • 2000
  • Thermophilic bacterium, Bacillus stearothermophilus NUB3621, was engineered to produce ethanol from glucose by introducing cloned thermostable pyruvate decarboxylase and alcohol dehydrogenase genes. A novel promoter sequence was screened and used for the enhancement of these two enzymes. Successful redirection of metabolic flux into ethanol was obtained. In addition, gene expression profiling using Bacillus subtilis DNA microarray was analyzed to overcome the intrinsic low glucose utilization of B.stearothermophilus. Many known and unknown genes were identified to be up or down regulated under glucose-containing media.

  • PDF

Electro-transport of Nicotinamide Adenine Dinucleotide Phosphate (NADPH)

  • Lee, Seung-Yeon;Kim, Su-Youn;Youe, Jee-Sun;Oh, Seaung-Youl
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.232.2-232.2
    • /
    • 2003
  • Transdermal iontophoresis is a physical enhancement technique to facilitate the delivery of primarily charged molecules across the skin. Principal mechanism of iontophoresis is electrorepulsion experienced by the charged solutes under the application of a potential gradient. In this work, we have investigated several factors (concentration of NADPH, current density) that can affect the iontophoretic flux. We also studied the stability of NADPH in aqueous solution with/without various antioxidants such as butylated hydroxy toluene (BHT). (omitted)

  • PDF

Effect of Vehicles and Penetration Enhancers onthe Percutaneous Absorption of Ketorolac Tromethamine across Hairless Mouse Skin

  • Cho, Young-Ah;Gwak, Hye-Sun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.234.1-234.1
    • /
    • 2003
  • The effects of vehicles and penetration enhancers on the in vitro permeation of ketorolac tromethamine (KT) across excised hairless mouse skins were investigated. Among pure vehicles examined, propylene glycol monolaurate (PGML) showed the highest permeation flux, which was 94.3${\pm}$17.3 mg/cm$^2$/hr. Even though propylene glycol monocaprylate (PGMC) alone did not show high permeation rate, the skin permeability of DT was markedly increased by the addition of diethylene glycol monoethyl ether (DGME); the enhancement factors were 19.0 and 17.1 at 20 and 40% of DGME, respectively. (omitted)

  • PDF

The Increase in Regression Rate due to Helical Grain in Solid Fuel of Hybrid Rocket (나선형 홈에 의한 하이브리드 로켓 고체연료의 연소율 증가 특성)

  • Hwang, Yeong-Chun;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.59-66
    • /
    • 2006
  • To understand the role of helical geometry on the regression rate enhancement, two competing underlying mechanisms such as turbulence enhancement and swirling motion production were studied by numerical calculations. Experimental results showed that the enhancement of heat transfer rate has the very close relation to the increase in regression rate even though the percentage of increase in heat transfer rate is different from that in regression rate. This discrepancy is presumably due to the change of turbulent flow feature caused by so-called "blowing mass flux" from the fuel surface. In this regard, the results of RANS calculation show that the blowing velocity is responsible for the reduction of the swirl generation and the increase in the turbulent kinetic energy. And the dominancy of one of the mechanisms causes the increase in the regression rate. Meanwhile, the increase in turbulent kinetic energy due to the mixing of blowing flow and free stream flow does not contribute for the enhancement of the heat transfer rate to the surface because the blowing flow pushes boundary layer away from the solid surface.

Improvement of Membrane Performance by Natural Convection Instability Flow in Ultrafiltration of Colloidal Solutions (콜로이드 용액의 한외여과에서 자연대류 불안정 흐름의 막성능 개선 효과)

  • Cho, Youn-Joo;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.84-90
    • /
    • 2011
  • We studied the effects of induction of natural convection instability flow (NCIF) according to the gravitational orientation (inclined angle) of the membrane cell on the reduction of membrane fouling in ultrafiltration (UF) of colloidal silica solutions. Five colloidal silica solutions with different silica size (average size = 7, 12, 22, 50 and 78 nm) were used as UF test solutions. The silica particles in colloidal solutions form cakes on the membrane surface thereby causing severe reduction in the flux. The UF performance according to the gravitational orientation of the membrane cell (from 0 to $180^{\circ}$ inclined angle), was examined in an unstirred dead-end cell. We evaluate the effects of NCIF on membrane performance as the flux enhancement ($E_i$). In the dead-end UF of smaller size (7, 12 and 22 nm) silica colloidal solutions, changing the gravitational orientation (inclined angle) of the membrane cell induces NCIF in the membrane module and higher inclined angle and smaller size silica colloidal solution offer more stronger NCIF. This induced NCIF enhances back transport of the deposited silica solutes away from the membrane surface, therefore gives for the improvement of permeate flux. But in UF of more larger size (50 and 78 nm) silica colloidal solutions, NCIF effects are not appearing. These results suggest that the size of colloidal particle affects the extent of NCIF occurrence.

The Distributions of Liquid Water Content(LWC) and the Potential Enhancement of Precipitation over Andong Area observed from Microwave Radiometer (Microwave radiometer를 이용한 안동지역의 수액량 및 증우가능량 추정)

  • 정관영;김효경;이선기;정영선
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.165-174
    • /
    • 1998
  • The observation of liquid water content(LWC) and the estimation of precipitation enhancement by cloud seeding were made over the Andong in Korea from March 1997 through Feb 1998. A dual-channel microwave radiometer was used to measure the liquid water content and water vapor. It was shown that the 90% of observational period had the amount of less than 0.1 mm in LWC, and that the amount of precipitation was proportionally increased to liquid water content. The amount of LWC has maximum in summer and minimum in winter. The content of liquid cloud water was showed higher value from the time of 12 to the time of 17 except for summer season in which it extremely fluctuated with a large precipitation. The majority of liquid water content over the area occurred with westerly and southwesterly wind which were flowed from the Sobaek mountain. The ratio of horizontal LWC flux and vertical precipitation flux, $P_{en}$ is almost ranked in the interval of 0.0~0.5 with maximum of 0.5 in spring, 0.2 in summer and fall, and 0.1 in winter. Accordingly, it is estimated that the potential enhancement of precipitation over Andong area by cloud seeding has high value in spring with westerly wind.

Pressure drop and heat transfer characteristics of a flat-plate solar collector with heat transfer enhancement device (열전달 향상 장치에 따른 평판형 태양열 집열기의 압력강하 및 열전달 특성)

  • Ahn, Sung-Hoo;Shin, Jee-Young;Son, Young-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.453-460
    • /
    • 2013
  • The surface roughness and heat transfer enhancement devices are known to increase the performance of a flat plate soar collector. This study includes the experiments on the effect of the several heat transfer enhancement devices inserted in duct to simulate the flat-plate solar collector. Experiment was basically at a constant heat flux on the upper duct wall. Inserted heat transfer enhancement devices are Chamfered rib $10^{\circ}$, Chamfered rib $20^{\circ}$, Rib & Groove and Rib & Dimple. Reynolds number is in the range of 2,300 to 22,000 which corresponds to turbulent regime. With the heat transfer enhancement devices, heat transfer would increase by the secondary flow and the increase of the heat transfer area. Pressure drop also increases with the insertion of the enhancement devices. Rib & Dimple model is the best in heat transfer enhancement, however, Chamfered rib $10^{\circ}$ model is the lowest in the pressure drop. Considering the heat transfer enhancement simultaneously with low pressure drop increase, performance factor was the best for the Chamfered rib $10^{\circ}$.

Heat Transfer Enhancement from Plain and Micro Finned Surfaces According to Liquid Subcooling (작동유체의 과냉도에 따른 매끈한 표면과 마이크로 핀 표면에서의 열전달 촉진에 관한 연구)

  • Lim, Tae-Woo;You, Sam-Sang;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1137-1143
    • /
    • 2009
  • Experiments were conducted to evaluate pool boiling heat transfer performance between plain and micro finned surfaces with FC-72, which is chemically and electrically stable. Three kinds of micro fins with the dimension of $100{\mu}m\;{\times}\;10{\mu}m$, $150{\mu}m\;{\times}\;10{\mu}m$ and $200{\mu}m\;{\times}\;10{\mu}m$ (width $\times$ height) were fabricated on the surface of a silicon chip. The experiments were carried out on the liquid subcooling of 5, 10 and 15 K under the atmospheric condition. The micro finned surface with a larger fin width of $200{\mu}m$ provided a better pool boiling heat transfer performance. Also, the micro finned surfaces showed a sharp increase in heat flux with increasing wall superheat and a larger heat transfer enhancement compared to a plain surface.

Enhancement of Light Extraction in White LED by Double Molding (이중 몰딩에 의한 백색 LED의 광추출 효율 향상)

  • Jang, Min-Suk;Kim, Wan-Ho;Kang, Young-Rea;Kim, Ki-Hyun;Song, Sang-Bin;Kim, Jin-Hyuk;Kim, Jae-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.849-856
    • /
    • 2012
  • Chip on board type white light emitting diode on metal core printed circuit board with high thixotropy silicone is fabricated by vacuum printing encapsulation system. Encapsulant is chosen by taking into account experimental results from differential scanning calorimeter, shearing strength, and optical transmittance. We have observed that radiant flux and package efficacy are increased from 336 mW to 450 mW and from 11.9 lm/W to 36.2 lm/W as single dome diameter is varied from 2.2 mm to 2.8 mm, respectively. Double encapsulation structure with 2.8 mm of dome diameter shows further significant enhancement of radiant flux and package efficacy to 667 mW and 52.4 lm/W, which are 417 mW and 34.8 lm/W at single encapsulation structure, respectively.

A Study on Influence of Flow Boiling Heat Transfer on Fouling Phenomenon in Nanofluids (나노유체에서 파울링 현상이 유동 비등 열전달에 미치는 영향에 대한 연구)

  • Kim, Woojoong;Yang, Yongwoo;Kim, Younghun;Park, Sungseek;Kim, Namjin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.3
    • /
    • pp.95-102
    • /
    • 2016
  • A boiling heat transfer is used in various industry such as power generation systems, heat exchangers, air-conditioning and refrigerations. In the boiling heat transfer system, the critical heat flux (CHF) is the important factor, and it indicated safety of the system. It has kept up studies on the CHF enhancement. Recently, it is reported the CHF enhancement, when working fluid used the nanofluid with high thermal properties. But it could be occurred nanoflouling phenomenon from nanoparticle deposition, when nanofluid applied the heat transfer system. And, it is reported that the safety and thermal efficiency of heat transfer system could decrease. Therefore, it is compared and analyzed to the CHF and the boiling heat transfer coefficient on effect of artificial nanofouling (coating) in oxidized multi-wall carbon nanotube nanofluids. As the result, the CHF of oxidized multi-wall carbon nanofluids and the CHF of artificial nanofouling in the nanofluids increased to maximum 99.2%, 120.88%, respectively. A boiling heat transfer coefficient in nanofluid increased to maximum 24.29% higher than purewater, but artificial nanofouling decreased to maximum -7.96%.