• 제목/요약/키워드: Flux Linkage

검색결과 232건 처리시간 0.025초

회전자 돌극형 단상 SRM에서 극호와 돌극 길이가 토오크에 미치는 영향 (Influence of Pole Arc and Salient Pole length on Torque of Salient Pole Rotor Type Single Phase SRM)

  • 김준호;이은웅;오영웅;이민명;여상겸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.107-109
    • /
    • 2001
  • The salient pole rotor type single phase SRM has a salient pole in the rotor in order to use axial direction fluxes and radial direction fluxes simultaneously. A flux linkage between the rotor and the stator are increased because of the salient pole in the rotor. But, the inductance at unaligned position and aligned position is increased together. Therefore, the length of pole are and salient pole should be selected that the inductance increment at aligned position is higher than the inductance increment at unaligned position. On this paper, we will be studied the influence of the pole arc and the salient pole length on the torque of the salient pole rotor type single phase SRM.

  • PDF

Halbach 배열과 skew를 갖는 PMSLM의 특성해석 및 실험 (Characteristic Analysis and Measurement of PMLSM with Halbach Array and Skew)

  • 장석명;서정출;조한욱;유대준;최장영;장원범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1156-1158
    • /
    • 2005
  • This paper deals with the prediction of characteristic for permanent magnet linear synchronous motor(PMLSM). The open-circuit field distribution is predicted using a two-dimensional(2-D) analytical solution derivd in terms of magnetic vector potential. The slotting and skew effect is considered using the relative permeance function. and than using this result, flux linkage and back EMF is calculated. The results are validated extensively by finite element(FE) analyses and measurement.

  • PDF

축방향으로 자화된 영구자셕 가동자를 갖는 Tubular형 직선 왕복 액추에이터의 전자기적 특성해석 및 설계 (Design and Analysis of Tubular Type Linear Oscillatory Actuator with Axially Magnetized Permanent magnet)

  • 장석명;서정출;최장영;유대준;조한욱;장원범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1017-1019
    • /
    • 2005
  • This paper deals with tubular type linear oscillatory actuator with axially magnetized permanent magnet. The magnetic field distribution is predicted using a two-dimensional analytical solution derived in terms of magnetic vector potential and cylindrical coordinate system. Using this result, trust and flux linkage and back emf are derived. The results of predictions from the analysis are compared with corresponding finite element method.

  • PDF

Calculation of Winding Inductances for a Single-Phase Brushless DC Machine

  • Joo, Dae-Suk;Woo, Kyung-Il;Kim, Dae-Kyong
    • Journal of Magnetics
    • /
    • 제17권3호
    • /
    • pp.196-199
    • /
    • 2012
  • This paper presents the analytical calculation of winding inductance for a single-phase brushless DC machine based on the magnetic circuit concept. The machine is used in the low power range of applications, such as ventilation fans, due to its simplicity and low cost. Since flux linkage is proportional to inductance, the calculation of winding inductance is of central importance. By comparison with experimental and analytical values, it is shown that proposed analytical expression is able to effectively predict the winding inductance of single-phase brushless DC machines at the design stage.

Topology Design Optimization of Electromagnetic Vibration Energy Harvester to Maximize Output Power

  • Lee, Jaewook;Yoon, Sang Won
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.283-288
    • /
    • 2013
  • This paper presents structural topology optimization that is being applied for the design of electromagnetic vibration energy harvester. The design goal is to maximize the root-mean-square value of output voltage generated by external vibration leading structures. To calculate the output voltage, the magnetic field analysis is performed by using the finite element method, and the obtained magnetic flux linkage is interpolated by using Lagrange polynomials. To achieve the design goal, permanent magnet is designed by using topology optimization. The analytical design sensitivity is derived from the adjoint variable method, and the formulated optimization problem is solved through the method of moving asymptotes (MMA). As optimization results, the optimal location and shape of the permanent magnet are provided when the magnetization direction is fixed. In addition, the optimization results including the design of magnetization direction are provided.

Two-Inductor Non-Isolated DC-DC Converter with High Step-Up Voltage Gain

  • Lee, Sze Sing;Chu, Bing;Lim, Chee Shen;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1069-1073
    • /
    • 2019
  • In this paper, an alternative non-isolated DC-DC converter with a high voltage boosting capability is proposed. Two inductors are used and one of them has its flux linkage increases during its charging period to achieve a high step-up voltage gain. Among the three integrated capacitors, one portrays the partial characteristic of the switched-capacitor technique, while the other two are connected in series across the load. With the two switches controlled using the same duty cycle, the proposed topology demonstrates the merits of a higher and wider range of step-up voltage gain when compared with recent topologies. In addition, a reduction in loss is induced and a higher efficiency is ensured with all the voltage stresses constrained within the output voltage. Operation of the proposed converter is analyzed and validated through experimental results obtained with a prototype.

Adaptive Input-Output Linearization Technique of Interior Permanent Magnet Synchronous Motor with Specified Output Dynamic Performance

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Moon, Gun-Woo;Lee, Dae-Sik;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권2호
    • /
    • pp.58-66
    • /
    • 1996
  • An adaptive input-output linearization technique of an interior permanent magnet synchronous motor with a specified output dynamic performance is proposed. The adaptive parameter estimation is achieved by a model reference adaptive technique where the stator resistance and the magnitude of flux linkage can be estimated with the current dynamic model and state observer. Using these estimated parameters, the linearizing control inputs are calculated. With these control inputs, the input-output linearization is performed and the load torque is estimated. The adaptation laws are derived by the Popov's hyperstability theory and the positivity concept. The robustness and the output dynamic performance of the proposed control scheme are verified through the computer simulations.

  • PDF

Dynamic Behavior of Regulatory Elements in the Hierarchical Regulatory Network of Various Carbon Sources-Grown Escherichia coli

  • Lee, Sung-Gun;Hwang, Kyu-Suk;Kim, Cheol-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.551-559
    • /
    • 2005
  • The recent rapid increase in genomic data related to many microorganisms and the development of computational tools to accurately analyze large amounts of data have enabled us to design several kinds of simulation approaches for the complex behaviors of cells. Among these approaches, dFBA (dynamic flux balance analysis), which utilizes FBA, differential equations, and regulatory events, has correctly predicted cellular behaviors under given environmental conditions. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. The use of Boolean rules for regulatory events in dFBA has limited the representation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. In this paper, we adopted the operon as the basic structure, constructed a hierarchical structure for a regulatory network with defined fundamental symbols, and introduced a weight between symbols in order to solve the above problems. Finally, the total control mechanism of regulatory elements (operons, genes, effectors, etc.) with time was simulated through the linkage of dFBA with regulatory network modeling. The lac operon, trp operon, and tna operon in the central metabolic network of E. coli were chosen as the basic models for control patterns. The suggested modeling method in this study can be adopted as a basic framework to describe other transcriptional regulations, and provide biologists and engineers with useful information on transcriptional regulation mechanisms under extracellular environmental change.

150kW급 IPMSM의 영구자석 사용량 저감과 유기전압 만족를 위한 회전자 형상 최적설계 (Optimal Rotor Shape Design of 150kW-class IPMSM for Reduce Usage of Permanent Magnet and Satisfy Induced Voltage)

  • 정태철;김원호;장익상;김미정;이기덕;이재준;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.991-992
    • /
    • 2011
  • This study was designed to satisfy induced voltage limits considering drive's specifications and optimize design reducing usage of permanent magnet, by increasing salient poles ratio, when designing 150kW IPMSM. In order to achieve these objectives, design plans were determined, based on Ld and Lq parameters of a basic design model, according to changes in salient poles ratio and flux linkage using IPMSM's voltage equation and torque equation and then, required torque and induced voltage were analyzed using Sensitivity Analysis. Based on analysis data, the optimum design was performed and basic model's characteristics were compared to final model's through Gradient-Based Optimization Technique.

  • PDF

히스테리시스 특성을 고려한 전압 변성기 오차 보상 알고리즘 (Compensation algorithm of a voltage transformer considering hysteresis characteristics)

  • 강용철;정태영;박종민;장성일;김용균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.12-14
    • /
    • 2007
  • A voltage transformer (VT) is used to transform a high voltage into a low voltage as an input for a metering device or a protection relay. VTs use an iron core which maximizes the flux linkage. The primary current of the VT has non-fundamental components caused by the hysteresis characteristics of the iron core. It causes a voltage drop in the winding impedances resulting in the error of the VT. This paper describes a compensation algorithm for the VT. The proposed algorithm can compensate the secondary voltage of VT by calculating the primary current from the exciting current of the hysteresis loop in the voltage transformer. In this paper, the exciting branch was divided into a non-linear core loss resistor and a non-linear magnetizing inductor. The performance of the proposed algorithm was validated under various conditions using EMTP generated data. Test results show that the proposed compensation algorithm can improve the accuracy of the VT significantly.

  • PDF