• Title/Summary/Keyword: Flux Leakage

Search Result 313, Processing Time 0.024 seconds

Analysis on Parameter Detuning of Induction Motor Drives in Constant Torque Region (일정토크영역에서 유도전동기 고정자자속기준제어의 파라미터 비동조 영향 분석)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.81-86
    • /
    • 2012
  • It is well known that the stator-flux-oriented induction motor drives are not dependent on parameter detuning in constant torque region except low speed range. This paper presents parameter detuning effects of stator-flux-oriented induction motor drives in constant torque region. The detuning effects of stator resistance, rotor resistance and rotor leakage inductance are analyzed.

Reducing the Cogging toque of IPM type BLDC Motor according to the Flux barrier shape (IPM type BLDC 전동기의 자속장벽 설치에 따른 코깅 토크 저감)

  • Yang, Byoung-Yull;Yun, Keun-Young;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.67-69
    • /
    • 2004
  • This paper describes an approach to design a interior permanent magnet motor(IPM motor) for the reduction of cogging torque. The magnitude of the torque ripple and cogging torque in a interior permanent magnet motor(IPM motor) are generally dependent on several major factors: the shape of stator tooth tip, slot opening width, air gap length, the shape of barrier preventing flux leakage of magnets, magnet configuration and magnetization distribution or magnet poles. In this paper, the IPM BLDC motor is designed considering a saturated leakag flux between the barriers on the rotor for increasing the efficiency and decreasing the magnitude of the cogging torque. Analytical model is developed for the IPM BLDC motor with a concentrated winding stator. The results verifies that the proposed design approach is very efficient and effective in reducing the cogging torque and the torque ripple of the IPM BLDC motor to be used in an electric vehicle.

  • PDF

Stability Analysis Of High-Tc Superconducting Tape Through Magnetic Field Analysis Of The High-Tc Superconducting Synchronous Motor (고온초전도동기모터의 자계분포해석에 따른 테이프선재의 안정도해석)

  • 송명곤;장원갑;윤용수;문창욱;홍계원;이상진;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.81-84
    • /
    • 1999
  • The purpose of this paper is to find the magnetic field distribution inside the motor in order to find out if the high-Tc superconducting tapes operate stably in actual motor operation. With this gola, magnetic field distribution in a detailed model of the actual motor was analyzed through F.E.M. (Finite Element Method). As a result, it has been proved that the high-Tc superconducting tapes can withstand 4 A of current with stability. 4 A was the amount of current needed to achieve 600 A ·turns which is required by the previous simulation aimed at developing this motor. Also, it has been observed that the flux damper reduces armature reactance during the motor operation and during load changes, helping the stable motor operation. But, it was observed that the flux damper generates loss by means of leakage flux and this decreases the output of the motor by about 5%.

  • PDF

Analysis and Optimization of Rotor-twisted Structure for 12/10 Alternate Poles Wound FSPM Machine for Electric Vehicles

  • Xie, De'e;Wang, Yu;Deng, Zhiquan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.269-274
    • /
    • 2013
  • Fault-tolerant capability, wide speed range and overload capability are required in electric motors used in electric vehicles. In this paper, based on the analysis of the all poles wound and alternate poles wound flux-switching permanent-magnet machines, an optimization method is studied to reduce torque ripple. The method takes account of both flux-leakage and cogging torque. The simulation result shows that the method can reduce the torque ripple effectively. This study lays the foundation for the further application of FSPM in electric vehicles.

Assessment of Insulation Condition for Generator Rotor Windings (발전기 회전자 권선의 건전성 평가)

  • Lee, Young-Jun;Ju, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07e
    • /
    • pp.59-60
    • /
    • 2006
  • A shorted-turn test was performed at the Pyungtaek combined cycle power plant on gas turbine generators. The test was conducted using a permanent flux probe and on-line shorted-turn diagnosis system. The permanent flux probe installed in the generator air gap senses the field winding slot leakage flux and produces a voltage proportional to the rate of change signature unique to each field winding. We have also applied a voltage waveform analysis technique that can identify the pole location, slot number and number of shorted-turn with each slot.

  • PDF

Performance Analysis of Linear Brake by Using Efficient 2-D Model (유효한 2차원 모델을 이용한 리니어 브레이크 성능 해석)

  • Han, Pil-Wan;Chun, Yon-Do;Lee, Ju;Lee, Kwan-Seop
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.601-607
    • /
    • 1998
  • This paper presents the efficient 2-D linear brake analysis model which can compensate the lateral leakage flux by changingng the airgap length and magneto-motive force(MMF). The linkage flux of the 2-D analysis is larger than that of 3-D analysis. This is caused by the assumption in 2-D analysis that geometric and physical values are constant along the perpendicular direction(z) to the analysis region. The equivalent MMF have been calculated from the linkage flux difference between the 2-D and 3-D analyses which are performed at zero velocity. The performances of the linear brake have been analyzed effectively by using the compensated 2-D models without using 3-D FEM.

  • PDF

Optimized Magnetic Shielding for the MagLev Vechicles (자기부상열차의 최적 자기 차폐)

  • 윤현보;박찬일;박희창;손영수;임계재
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.3
    • /
    • pp.17-25
    • /
    • 1991
  • Magnetic leakage flux which is generated from the levitation magnets, linear induction motors, and guide magnets of a MagLev(Magnetic Levitation) system is directly related to inter - system EMI, intra - system EMI, and biological effects. In this paper, the magnetic leakage flux from MagLev vechicles designed by Korea Resarch Institute of Ships & Ocean Engineering was calculated considering the various parameters which influence ma- gnetic field intensity around the MagLev system. Based on the calculated field intensity, the thickness of shielding material and shielding position for MagLev floor and side walls are calculated, taking into account the shielding effectiveness of a shield with minimum weight. For the nonuniform shielding method derived from the above procedure, the weight of a shield con- sisting of floor and side walls shielding can be reduced to more 50% than uniform shielding method.

  • PDF

Defect Length Estimation Using SQI for Underground Gas Pipelines (SQI를 이용한 지하 매설 가스 배관 결함 길이 추정)

  • Kim, Min-Ho;Choi, Doo-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.27-32
    • /
    • 2011
  • In this paper a new defect length estimation algorithm using SQI(self quotient image) is presented for the MFL(magnetic flux leakage) inspection of underground gas pipelines. Gas pipelines are magnetized by the permanent magnets of the MFL PIG(pipeline inspection gauge) when the PIG runs through pipelines. If defects or corrosions exist in the pipeline, magnetic leakage flux is increased. The MFL signals measured by hall sensors are analyzed to estimate defect length using SQI. For 74 real defects carved in KOGAS pipeline simulation facility(KPSF) the accuracy of defect length estimation of the proposed algorithm was compared with that of conventional methods.

Modeling of a Scan Type Magnetic Camera Image Using the Improved Dipole Model

  • Hwang Ji-Seong;Lee Jin-Yi
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1691-1701
    • /
    • 2006
  • The scan type magnetic camera is proposed to improve the limited spatial resolution due to the size of the packaged magnetic sensor. An image of the scan type magnetic camera, ${\partial}B/{\partial}x$ image, is useful for extracting the crack information of a specimen under a large inclined mag netic field distribution due to the poles of magnetizer. The ${\partial}B/{\partial}x$ images of the cracks of different shapes and sizes are calculated by using the improved dipole model proposed in this paper. The improved dipole model uses small divided dipole models, the rotation and relocation of each dipole model and the principle of superposition. Also for a low carbon steel specimen, the experimental results of nondestructive testing obtained by using multiple cracks are compared with the modeling results to verify the effectiveness of ${\partial}B/{\partial}x$ modeling. The improved dipole model can be used to simulate the LMF and ${\partial}B/{\partial}x$ image of a specimen with complex cracks, and to evaluate the cracks quantitatively using magnetic flux leakage testing.

Analysis of Key Parameters for Inductively Coupled Power Transfer Systems Realized by Detuning Factor in Synchronous Generators

  • Liu, Jinfeng;Li, Kun;Jin, Ningzhi;Iu, Herbert Ho-Ching
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1087-1098
    • /
    • 2019
  • In this paper, a detuning factor (DeFac) method is proposed to design the key parameters for optimizing the transfer power and efficiency of an Inductively Coupled Power Transfer (ICPT) system with primary-secondary side compensation. Depending on the robustness of the system, the DeFac method can guarantee the stability of the transfer power and efficiency of an ICPT system within a certain range of resistive-capacitive or resistive-inductive loads. A MATLAB-Simulink model of a ICPT system was built to assess the system's main evaluation criteria, namely its maximum power ratio (PR) and efficiency, in terms of different approaches. In addition, a magnetic field simulation model was built using Ansoft to specify the leakage flux and current density. Simulation results show that both the maximum PR and efficiency of the ICPT system can reach almost 70% despite the severe detuning imposed by the DeFac method. The system also exhibited low levels of leakage flux and a high current density. Experimental results confirmed the validity and feasibility of an ICPT system using DeFac-designed parameters.