• Title/Summary/Keyword: Flux Analysis

Search Result 2,736, Processing Time 0.03 seconds

MetaFluxNet: a program for metabolic flux analysis (MFA)

  • Yun, Hong-Soek;Lee, Dong-Yup;Lee, Sang-Yup;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.57.3-57
    • /
    • 2002
  • 1. Introduction 2. General flux balance model 3. MetaFluxNet 3.1 Overview of MetaFluxNet 3.2 Project file format 3.3 Construction of metabolite reaction model 3.4 Metabolic flux analysis using linear programming 3.5 Visualization of MFA results 4. Conclusion and plan 5. Acknowledgement. References.

  • PDF

A Study on the Numerical Analysis of Magnetic Flux Density by a Solenoid for MIAB Welding (MIAB용접에서 코일에 의한 자속밀도 분포의 수치적 해석에 관한 연구)

  • Choe, Dong-Hyeok;Kim, Jae-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.73-81
    • /
    • 2001
  • The MIAB welding uses a rotating arc as its heat source and is known as an efficient method fur pipe butt welding. The arc is rotated around the weld line by the electro-magnetic force resulting from the interaction of arc current and magnetic field. The electro-magnetic force is affected by magnetic flux density, arc current, and arc length. Especially, the magnetic flux density is an important factor on arc rotation and weld quality. This paper presents a 2D finite element model for the analysis of magnetic flux density in the actual welding conditions. The magnetic flux density is mainly dependent on gap between two pipes, the position of coil from gap center, exciting current, and relative permeability. Thus, the relations between magnetic flux density and main factors were investigated through experiment and analysis. Experiments were performed for the steel pipes(48.1mm O.D and 2.0mm thickness). The analysis results of magnetic flux density reveal that it increases with increasing exciting current, increasing relative permeability, decreasing distance from gap center to coil, and decreasing gap size. It is considered that the results of this study can be used as important data on the design of coil system and MIAB welding system.

  • PDF

Eddy current loss calculation of flux shield in the large turbo generator using axi-periodic analysis (Axi-periodic Analysis를 이용한 대형 터보 발전기 단부 Flux Shield의 Eddy Current Loss 산정)

  • Kwon, Soon-O;Lee, Jung-Jong;Hong, Jung-Pyo;Nam, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.987-989
    • /
    • 2005
  • Axi-periodic analysis using magnetic vector potential is formulated in time harmonic field and applied to the field analysis for the end region of large turbo generator in this paper. By using axi-periodic analysis, the effect of flux shield, one of the structure placed in the end region of large turbo generator to prevent stator end from thermal damage, is studied, and eddy current loss in the flux shield is estimated for operation conditions. 3D FEA is used for the verification of presented analysis method. Because 3D flux distribution can be calculated with 2D modeling, magnetic field showing 3D distribution can be effectively calculated by axi-periodic analysis comparing with 3D FEA.

  • PDF

Hysteresis Characteristics of Flux-Lock Type Superconducting Fault Current Limiter (자속구속형 고온초전도 사고전류제한기의 히스테리시스 특성)

  • Lim, Sung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.66-70
    • /
    • 2007
  • For the design to prevent the saturation of the iron core and the effective fault current limitation, the analysis for the operation of the flux-lock type superconducting fault current limiter (SFCL) with consideration for the hysteresis characteristics of the iron core is required. In this paper, the hysteresis characteristics of the flux-lock reactor, which is an essential component of the flux-lock type SFCL, were investigated. Under normal condition, the hysteresis loss of the iron core in the flux-lock type SFCL does not happen due to its winding structure. From the equivalent circuit for the flux-lock type SFCL and the fault current limiting experiments, the hysteresis curves could be drawn. From the analysis for both the hysteresis curves and the fault current limiting characteristics due to the number of turns for the 1st and 2nd windings, the increase of the number of turns in the 2nd winding of the flux-lock type SFCL had a role to prevent the iron core from saturation.

Interlaminar Flux Density Distribution at Joints of Overlapping Stacked Electrical Steel and Amorphous Ribbons

  • Erdem, Sezer;Derebasi, Naim
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.190-193
    • /
    • 2010
  • The design of joints in a transformer core significantly affects the transformer's efficiency. Air gaps cause variations in the flux distribution at the joints of the laminations, which depend on the geometry. Two similar samples consisting of electrical steel strips and amorphous ribbons were made. The spatial flux distributions were determined using an array of search coils for each sample. 2D models of these samples were created and examined by finite element analysis. The magnetic flux distribution for each lamination in the samples was computed. The results show that the flux density in amorphous ribbons above and below the air gap starts to approach saturation at lower flux density levels than for electrical steel. The flux density measured using the search coil under the air gap is increased in amorphous ribbons and decreased in the electrical steel with increasing frequency.

Estimation of the flux distribution in the brushless motors using space harmonic analysis (공간고조파 해석을 이용한 brushless 전동기의 공극자속 분포 산정)

  • Kwon Soon-O;Liang Fang;Tao Sun;Kang Gyu-Hong;Hong Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1085-1087
    • /
    • 2004
  • The space harmonic analysis, as an analytical method, is used to estimate the flux distribution in the air gap of the brushless motors in this paper. With the flux distribution, back-emf and torque characteristics can be estimated.[1-7] Therefore, the air gap flux distribution of surface type permanent magnet motor according to the motor specifications are studied to estimate the torque characteristics in this paper. To validate the analysis result of this method, 2-dimensional finite element analysis is performed and the air gap flux density is compared to that from space harmonic analysis.

  • PDF

Characteristic Analysis of a Magnet for Magnetically Levitated Vehicle using FLUX3D (FLUX3D를 이용한 자기부상용 전자석의 특성 해석)

  • Lee, Jae-Kun;Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.127-129
    • /
    • 1996
  • A 3-dimensional analysis is desired for a magnet of magnetically levitated vehicle because the geometrical shape of the magnet is complicated and nonsymmetric. A FEM package of FLUX3D is used to analyze the characteristic of the magnet. Various quantities could be observed like levitation force, flux density distribution along the air gap, edge and fringing effect, leakage flux pattern, etc. The simulation results from FLUX3D are compared with those of 2-D analysis and test results. There are a little difference between results due to the boundary conditions and magnetized B-H curve of the core.

  • PDF

Characteristics Analysis of Short Flux Path Switched Reluctance Motor

  • Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.38-45
    • /
    • 2012
  • A novel kind of switched reluctance motor (SRM) with short flux path is proposed in this paper. Phase excitation in the SRM gives short flux paths, hence reducing the magnetomotive force required to drive the machine, resulting in significant reduction of copper wire and core losses compared to the typical SRM with diametric circulation of magnetic flux. To verify the performance, the characteristics analysis of a double-stator SRM, a 6/5 SRM with C-core structure, and a 4/5 two-phase SRM, which all have short flux paths, and a comparison with conventional SR motors are executed. The comparison demonstrates that the proposed motor offers some advantages in terms of torque and efficiency.

The Characteristic Analysis of the Ag/Bi-2223 Tape and the Flux damper in GTS Synchronous Motor through 3-Dimensional Magnetic Field Analysis Using F.E.M (3차원 자계분포해석을 이용한 고온초전도동기모터에서의 Ag/Bi-2223 Tape 및 Flux Damper의 특성해석)

  • 송명곤;윤용수;이상진;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.170-172
    • /
    • 2000
  • This paper deals with the characteristic analysis of the flux damper with respect to the load, and the stability of Ag/Bi-2223 tapes in a high-Tc superconducting (HTS) synchronous motor. To find out the magnetic field distribution in a detailed model of the actual motor, the experimentally measured currents of the armature and the field windings are used as input parameters. The simulation results show that the flux damper shields the time varying field up to 10%, reduces armature reactance during the motor operation and during load changes, improving the stable motor operation. And it was observed that the flux damper generates loss by means of leakage flux, but this is not significant and it doesn't degrade the performance of the TS synchronous motor.

  • PDF

Analysis of Magnetic Field Behavior and Iron Loss in Stator Core of Permanent Magnet Type Motor (영구자석형 모터의 고정자 철심에서 자계의 거동 및 철손 분석)

  • Ha Kyung-Ho;Cha Sang-Yoon;Kim Jae-Kwan;Hong Jung-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.76-82
    • /
    • 2006
  • This paper investigates the magnetic field behavior and its iron losses in the stator core using electrical steels. The analysis model is a brushless motor with the permanent magnet. The elliptical rotating and alternating flux distributions with non-sinusoidal waveform are obtained by Finite Element Method and then their harmonic components are extracted. Based on these results, the local iron losses in the stator core caused by the harmonic flux are calculated. And then this paper explains the relation between flux waveform and iron loss produced in each part of the stator core. Furthermore, the iron loss at no load condition is measured and compared with the analysis results.