• 제목/요약/키워드: Flux Analysis

검색결과 2,739건 처리시간 0.034초

다층 매입형 영구자석 전동기의 리플현상을 고려한 d,q축 쇄교자속 계산 (Calculation method of d,q axis linkage flux considering ripple characteristics in multilayer-buried IPMSM)

  • 우동균;곽상엽;서장호;정현교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.776-777
    • /
    • 2008
  • It is important to understand the relationship accurately between linkage flux distributions and machine characteristics for better design of multilayer-buried interior permanent magnet synchronous machines(IPMSM). This paper presents a improved calculation method for linkage flux of multilayer-buried IPMSM. From the analysis result, The proposed method shows that the calculated d,q linkage flux reflects a electromagnetic characteristic well in analysis model.

  • PDF

포화를 고려한 디스트형 단상 SRM의 3차원 유한 요소해석 (3D finite element analysis of disk type single phase SRM considering the saturation)

  • 이종한;이은웅;이동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.325-327
    • /
    • 1998
  • Disk type single-phase switched reluctance motor which has an advantage of simple robust construction, simple control circuity, and low manufacturing cost has a specific property of axial flux machine and radial flux machine simultaneously. So, this DSPSRM has a complicated magnetic circuit and it is difficult to analyze characteristics of DSPSRM for design. In this paper, we used to analyze the effects of radial flux and axial flux simultaneously by 3D-finite element method. From the results of 3-D FEM, we obtained the approximated torque characteristics of DSPSRM. It's analysis results can be used in optimal design of DSPSRM considering the saturation.

  • PDF

Simple Analysis Method for the Interrupting Capability of a Contact System in a Molded Case Circuit Breaker

  • Choi, Young-Kil;Jee, Seung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1257-1261
    • /
    • 2017
  • This paper focuses on understanding the interrupting capability of an arc contact system in a molded case circuit breaker (hereafter MCCB). We selected four types of MCCBs and analyzed the magnetic flux density distributions in the contact systems caused by the fault currents. We ascertained that the magnetic flux density profile varies according to the shape of the contact system and was asymmetric at both the ends of an arc, perpendicular to the arc column because of the magnetic grid installed in the contact system. The asymmetric difference creates a magnetic force that pushes the arc current outwards and provides an interrupting capability. We have introduced a simple analysis method for determining the interrupting capability of the contact system for an MCCB by the arc-driving magnetic flux density.

해석적 방법을 통한 X-Y 리니어 모터의 특성해석에 관한 연구 (A study of characteristic analysis of X-Y linear motor using analysis method)

  • 이동엽;황예;한광규;김규탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.29-31
    • /
    • 2005
  • The effective flux of X-Y linear motor is calculated with analytical method according to the arrangement of permanent magnet. In order to reduce leakage flux due to increased effective flux, the distance of the permanent magnet is adjusted. When the distance is 2[mm] between two magnets, the leakage flux is greatly reduced, and it is expected that if the segment of permanent magnet magnetized to x and y direction is added, the motor performance will be enhanced.

  • PDF

Numerical Analysis for Characterization of Single Phase Induction Motors by using Circuit Equations Coupled with Magnetic Field Distribution

  • Kim, Young Sun;Lee, Dong Yoon
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.255-259
    • /
    • 2013
  • In this paper a new coupling method for efficient and simple analysis of single phase induction motor is presented. The circuit representation of both the stator winding and each conducting rotor loop (composed of rotor bar and end ring segment) is used in conjunction with the distribution of magnetic flux linkage instead of inductance matrix. The flux linkage is calculated using air-gap flux density distributions driven by unit currents in the stator windings and rotor bars. The field distribution of one turn of a coil is calculated by FEM and the result is used to calculate total flux linkage by employing a coordinate transformation. The numerical results give good agreement with prior literature. The method is particularly effective in analyzing the effect of the number of rotor bars.

리니어형 자속펌프의 이동자장 속도에 따른 충전전류 특성 해석 (Analysis of Charging Characteristics of Linear Type Magnetic Flux Pump Depended on Traveling Speed of Magnetic Field)

  • 정윤도;김현기;배덕권;윤용수;조현철;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권1호
    • /
    • pp.47-51
    • /
    • 2010
  • We already obtained magnetic behavior of superconducting Nb foil of linear type magnetic flux pump (LTMFP) by means of the FEM analysis. As well as, fundamental equations of pumping current were theoretically derived based on the pumping sequences according to the position of normal spot of the moving flux. In this paper, we experimentally investigated pumping performances of LTMFP with a wide range of traveling speed of magnetic field. In order to confirm the numerical and theoretical approaches, we explained the pumping characteristics of LTMFP by use of the calculation sequence of pumping current.

자속구속 리액터의 히스테리시스 특성 분석 (Analysis of Hysteresis Characteristics of Flux-Lock Reactor)

  • 임성훈;최효상;강형곤;고석철;이종화;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.255-258
    • /
    • 2003
  • The hysteresis characteristics of flux-lock reactor, which is an essential component of flux-lock type superconducting fault current limiter (SFCL), was investigated. The hysteresis loss of iron core in flux-lock type SFCL does not happen due to its winding's structure especially in the normal state. From the equivalent circuit for the flux-lock type SFCL and the fault current limiting experiments, the hysteresis curves could be drawn. Through the hysteresis curves together with the fault current level due to the inductance ratio for the 1st and 2nd winding, the increase of the number of turns in the 2nd winding of the flux-lock type SFCL had a role to prevent the iron core from saturation.

  • PDF

실측실험과 3차원 정상상태 열전달 해석을 통한 발열유리의 온도 및 전열량 분석 (Analysis of Temperature and Total Heat of Heated Glass through Experimental Measurement and Three-Dimensional Steady-State Heat Transfer Analysis)

  • 이도형;윤종호;오명환
    • KIEAE Journal
    • /
    • 제15권1호
    • /
    • pp.111-116
    • /
    • 2015
  • Heat loss from windows and condensation occuring on its surface due to its lower insulation value causes much discomfort to occupants. In this study, Heated glass was used to make a basic study on prevention of condensation on glass surface for its heating functionality through experimental measurement and simulation analysis of total heat flux on the interior and exterior surface of glass. Error between experimental results and three dimensional steady-state heat transfer analysis were caused firstly, beacuse in the experimental chambers, cold chamber and steady temperature and humidity chamber, air temperature setting was not constant but rather ON/OFF control, and secondly, due to error rate in heat flux meter due to heat flux direction even in stable conditions.

Design of Surface-Mounted Permanent Magnet Synchronous Motor Considering Axial Leakage Flux by using 2-Dimensional Finite Element Analysis

  • Lee, Byeong-Hwa;Park, Hyung-Il;Jung, Jae-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2284-2291
    • /
    • 2018
  • This paper deals with optimum design of surface mounted permanent magnet synchronous motor (SPMSM) for automotive component. For a compact system structure, it was designed as a motor with a 14-pole 12-slot concentrated winding and hollow shaft. The motor is a thin type structure which stator outer diameter is relatively large compared to its axial length and is designed to have a high magnetic saturation for increasing the torque density. Since the high magnetic saturation in the stator core increases the axial leakage flux, a 3-dimensional (3-D) finite element analysis (FEA) is indispensable for torque analysis. However, optimum designs using 3-D FEA is inefficient in terms of time and cost. Therefore, equivalent 2-D FEA which is able to consider axial leakage flux is applied to the optimization to overcome the disadvantages of 3-D FEA. The structure for cost reduction is proposed and optimum design using equivalent 2-D FEA has been performed.

Adaptive Feedback Linearization Control Based on Airgap Flux Model for Induction Motors

  • Jeon Seok-Ho;Baang Dane;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.414-427
    • /
    • 2006
  • This paper presents an adaptive feedback linearization control scheme for induction motors with simultaneous variation of rotor and stator resistances. Two typical modeling techniques, rotor flux model and stator flux model, have been developed and successfully applied to the controller design and adaptive observer design, respectively. By using stator fluxes as states, over-parametrization in adaptive control can be prevented and control strategy can be developed without the need of nonlinear transformation. It also decrease the relative degree for the flux modulus by one, thereby, yielding, a simple control algorithm. However, when this method is used for flux observer, it cannot guarantee the convergence of flux. Similarly, the rotor flux model may be appropriate for observers, but it is not so for adaptive controllers. In addition, if these two existing methods are merged into overall adaptive control system, it brings about structural complexies. In this paper, we did not use these two modeling methods, and opted for the airgap flux model which takes on only the positive aspects of the existing rotor flux model and stator flux model and prevents structural complexity from occuring. Through theoretical analysis by using Lyapunov's direct method, simulations, and actual experiments, it is shown that stator and rotor resistances converge to their actual values, flux is well estimated, and torque and flux are controlled independently with the measurements of rotor speed, stator currents, and stator voltages. These results were achieved under the persistent excitation condition, which is shown to hold in the simulation.