• Title/Summary/Keyword: Fluvial Rivers

Search Result 36, Processing Time 0.024 seconds

Concepts and Geomorphic Properties on Fluvial Terraces (하안단구의 개념과 지형 특성)

  • Lee, Gwang-Ryul
    • The Korean Journal of Quaternary Research
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • To reinterpret the meaning of fluvial terraces in the Quaternary researches, the concepts and geomorphic properties of fluvial terraces are reviewed. Fluvial terraces are the alluvial landform that was once river channel or floodplain by paleochannel flowed in elevated areas from the current river by active incision of rivers due to the climatic changes and/or uplifts. As fluvial terraces are the remnants of alluviums after incisions of rivers, the major factors influencing on the incisions are the falling of erosion base, increase of river discharge and distinct geomorphic phenomenon of river. While it is generally known that fluvial terraces deposits in the upper or middle reaches of large rivers were formed during glacial periods, the deposits may be formed at the various periods due to the diverse natural environments and geomorphic properties of specific rivers, because there have been numerous cases that the ages of fluvial terraces in the upper or middle reaches of large rivers in Korea and China can be correlated to the interglacial periods.

  • PDF

Resistance Factors and Relationships for Measurements in Fluvial Rivers (충적하천 실측자료의 저항계수와 관계식)

  • Lee, Jong-Seok;Julien, Pierre Y.
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.7
    • /
    • pp.445-452
    • /
    • 2012
  • This study is used to analyze the distribution of resistance factors and the relationships of flow resistance with the field measurements which consist of the total 2,604 rivers for 1,865 bed material in natural channels and 739 vegetation in vegetated channels. Resistance factor relationships and distribution range of Manning roughness coefficients and Darcy-Weisbach friction coefficients by the regression analysis are derived from the power law form as a function of flow discharge and friction slope with bed materials and vegetations in natural and vegetated rivers, respectively.

Analysis on Fluvial Geomorphological Characteristics based on Past and Present Data for River Restoration: An Application to the Miho River and the Naesung River (하천 복원을 위한 과거 및 현재 자료 기반의 하천지형학적 특성 분석: 미호천과 내성천을 중심으로)

  • Lee, Chan Joo;Kim, Ji Sung;Kim, Kyu Ho;Shin, Hyoung Sub
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.3
    • /
    • pp.169-183
    • /
    • 2015
  • As a basic work for river restoration, analysis on fluvial geomorphological characteristics is made using past and present data to understand close-to-nature geomorphic status. The Miho and the Naesung Rivers are targets of this study. Fluvial geomorphic variables including valley-floor width, sinuosity, bankfull width, channel gradient, bed material size, bankfull discharge and unit stream power are evaluated with dominant processes. Though common sand-bed rivers with similar catchment area, the Miho and the Naesung Rivers are different in terms of valley-floor width, channel shape variables and dominant processes related with longitudinal location. In addition, analyses on interrelationship among the geomorphological variables are carried. Bankfull width is shown to be proportional to bankfull discharge, as is in a rough agreement with the previous studies. Relationship of bankfull discharge and channel gradient shows meandering and braiding are prevalent in the Miho River, whereas the most of the sub-reaches of the Naesung River fall to braiding. Relationship of channel gradient with width-depth ratio indicates dune-ripple processes are dominant in the Miho River, while the Naesung River shows longitudinal diversity from braiding in the downstream sub-reaches to riffle-pool and plane-bed along the upper ones. Analyses based on the past data on a river in a close-to-nature status are thought to be rather reasonable in comparison with those on the same river in a engineered condition.

From Zomia to Holon: Rivers and Transregional Flows in Mainland Southeastern Asia, 1840-1950

  • Iqbal, Iftekhar
    • SUVANNABHUMI
    • /
    • v.12 no.2
    • /
    • pp.141-155
    • /
    • 2020
  • How might historians secure for the river a larger berth in the recent macro-historical turn? This question cannot find a greater niche than in the emerging critique of the existing spatial configuration of regionalism in mainland Southeastern Asia. The Brahmaputra, Irrawaddy, Salween, Mekong and Yangtze rivers spread out like a necklace around Yunnan and cut across parts of the territories that are known as South, Southeast and East Asia. Each of these rivers has a different topography and fluvial itinerary, giving rise to different political, economic and cultural trajectories. Yet these rivers together form a connected "water-world". These rivers engendered conversations between multi-agentive mobility and large-scale place-making and were at the heart of inter-Asian engagements and integration until the formal end of the European empires. Being both a subject and a sponsor of transregional crossings, the paper argues, these rivers point to the need for a new historical approach that registers the connections between parts of the Southeast Asian massif through to the expansive plain land and the vast coastal rim of the Bay of Bengal and the China Seas. A connection that could be framed through the concept of Holon.

Analysis of Fluvial Terraces at Kohyun River in Youngcheon City (경북 영천시 고현천의 하안단구 지형 분석)

  • Cho, Young-Dong;Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.4
    • /
    • pp.447-462
    • /
    • 2009
  • Kohyun River basin is located at southern parts of Taebaek Mountains and most of river basins consists of sedimentary rock. The aims of this study are to investigate the distribution characteristics and processes of fluvial terraces at Kohyun River, using scientific methods such as classification of fluvial landforms, analysis of geomorphological deposits, XRD and OSL age dating. In Kohyun River basin are three levels terraces from T1 to T3. Fluvial terraces are assumed to be erosional terraces according to deposited situation of alurium and existences of bedrock riverbed. From the result of OSL age dating, formation age of fluvial terrace 1(T1) is calculated about 37,000 yr.B.P.(MIS 3), and fluvial terrace 2(T2) is calculated about 113,000 yr.B.P.(MIS 5). Therefore, fluvial terraces at Kohyun River are assumed to be formed at warmer period in the glacial stages or cooler period in the interglacial stages. The incision rate of fluvial terrace 1 at Kohyun River is calculated to be 0.054m/ka, and the incision rate of fluvial terrace 2 is calculated to be 0.115m/ka. This results suggest to lower incision rate than other rivers in Korea because of low uplift rates and little discharge.

Researches on fluvial terraces in Korea (한국의 하안단구 연구)

  • LEE, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.17-33
    • /
    • 2011
  • This study summarizes the research history of fluvial terraces in Korea and examines the geomorphic properties of fluvial terraces in Korea based on the previous works. The research history of fluvial terraces in Korea can be divided into the three periods. The theories of fluvial terraces were spread by the early geomorphologists during the period of Japanese colonial era to mid-1980s. The dissertations on the fluvial terraces were intensively published during the late 1980s to 1990s and their discussions were the center of geomorphology researches in Korea. Since 2000s, the discussions have become more mature and researches have been quantitatively increased as the various methodologies have been developed. The fluvial terraces in Korea are mostly developed in the western and eastern parts of the Taebaek Mountains, upper and middle reaches of Han and Nakdong River, and in the western slopes of Sobaek Mountains, middle reaches of Namhan River, upper and middle reaches of Geum and Seomjin River. Along these rivers in actively uplifted areas, fluvial terraces with much higher altitude from riverbed are observable and incision rates are relatively high. In the sense of the formation ages, they have developed in not regular patterns by the climatic changes during the Quaternary, but in more complicated aspects by the environmental conditions such as climate, hydrology, geology and geomorphology in the specific drainage basins.

A Study on fluvial Phenomena in the Bended Alluvial Rivers (만곡유로에서의 하상변동에 관한 연구)

  • 고재웅
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.75-80
    • /
    • 1975
  • The fluvial phenomena in the bended natural river course are studied experimentally. Some theoretical and empirical conclusions were derived in prior to this study by some authors but the limitation of applicability of those results are not clearly known because of the sensitibitys of the flow regime in the reach. The main objective of this study is directed to evaluate the mechanism of sedimentation and the cross sectional changes in the equilibrium status. the most governing factor influenced to the cross sectional changes in the bended reach is the occurance of spiral flow. In this study, the streamlines and velocity distributions are checked at given interval by the hydraulic model to find out the place where spiral flow are existing under the various flow magnitudes.

  • PDF

Incision and Geomorphic Development of Rivers on Eastern and Western Sides of the Northern Sobaek Mountains (소백산맥 북부 영동영서 하천의 하각과 지형 발달)

  • Cho, Young-Dong;Park, Chung-Sun;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.2
    • /
    • pp.27-40
    • /
    • 2017
  • This study tries to analyze topographic distribution and characteristics of as well as formative age and incision rate of fluvial terraces in Danyang River on western side and Geum River on eastern side of the northern Sobaek Mountains and to estimate geomorphic development during the late Quaternary in the mountains regarded as one of the uplift axes in the Korean Peninsula. OSL age dating shows that the fluvial terrace I with an altitude above riverbed of approximately 7~13 m in Danyang River has a formative age of approximately 18 ka (MIS 2) and incision rate in the river is approximately 0.156~0.194 m/ka based on the age. Altitudes above riverbed of the fluvial terrace I in Geum River range from approximately 7 to 14 m and the terrace is thought to be older than 70 ka based on age result from aeolian sediments above the terrace deposits, suggestive of an incision rate less than approximately 0.10 m/ka. These results indicate lower uplift rate in the northern Sobaek Mountains than in the Taebaek Mountains. Moreover, it can be suggested that the northern Sobaek Mountains has experienced asymmetric uplift during the late Quaternary, because the river on western side of the northern Sobaek Mountains shows greater uplift rate than the eastern side river does. Low incision rate in Geum River can be attributed to low altitude of the river basin with little difference in altitude from the base level as well as to gentle river slope due to influence of Nakdong River.

Diagnosis of Vegetation for the Ecological Rehabilitation of Streams - The Case of the Namhan River - (하천의 생태적 복원을 위한 식생학적 진단 - 남한강을 중심으로 -)

  • Myung, Hyun;Kwon, Sang-Zoon;Kim, Chang-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.5
    • /
    • pp.98-106
    • /
    • 2002
  • This study was designed to present a river model with the aim of restoring the ecosystem and improving the landscape along the urban rivers on the basin of the Namhanl river, a core life channel for the National Capital regin. The revelation of botanical status, transition trend and correlation of plants might lead to providing the urban river restoration projects and ecological river formation projects with basic data for a model of ideal aquatic ecology and landscape. The outcomes of this study could be summed up as follows: 1. The plant communities of river flora found on the basin of the Namhan river could be categorized largely into 39 plant communities 2. Most diverse plants were distributed in the rivers lower reaches such as Unsim-ri where the protected zone of Paldang reservoir for city water borders the body of Jodae swamp where natural streams flow nearby. 3. One of the greatest threats to the biomass of the River Namhan is that the communities of such invasive alien plants as Panicum dichotomiflorum and Ambrosia artemisiifolia var. elatior dominate most parts of the area, a fact that has resulted in a reduced variety of plants and will, sooner or later, be likely to cause an ecological imbalance in the hitherto healthy Aquatic plant life. It is highly advisable to gradually diversify the species of trees and to return the plants bark to their original state since, besides the naturalized plants, plantations afforested with Erigeron canadensis and Erigeron annuus stocks in buckwheat field, Robinia Pseudo-accacia in riverside forest, Pinus rigida in terrestrial forest on the river basin and Larix leptolepis are anticipated to act as interceptors of normal migrations of the fluvial and terrestrial ecosystems. Finally, it seems also desirable to continue to explore the relationship between fluvial and terrestrial ecologies with the purpose of building up a model of natural streams in urban areas based on the surveyed factors for plant life, soil and landscape and, moreover, on the forecasting for overall influences derived from the rotation upon the ecosystem.

Molecular Characterization of Dissolved Organic Matter Unveils their Complexity, Origin, and Fate in Glacier and Glacial-Fed Streams and Lakes on the Tibetan Plateau

  • Kim, Min Sung;Zhou, Lei;Choi, Mira;Zhang, Yunlin;Zhou, Yongqiang;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.192-199
    • /
    • 2021
  • Alpine glaciers harbor a large quantity of bio-labile dissolved organic matter (DOM), which plays a pivotal role in global carbon cycling as glacial-fed streams are headwaters of numerous large rivers. To understand the complexity, origin, and fate of DOM in glaciers and downstream-linked streams and lakes, we elucidated the molecular composition of DOM in two different Tibetan Plateau glaciers, eight glacial-fed streams and five lakes, using an ultrahigh-resolution 15 Tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The compositional changes of the DOM samples revealed that glacier DOM mostly exhibited sulfur-containing organic compounds (CHOS species). We also found that aliphatic formulae contributed more than 50% of the total abundance of assigned molecules in glacier samples, and those compounds were significantly related to CHOS species. The CHO proportions of glacial-fed streams and lakes samples increased with increasing distance from glacial terminals. The relative contribution of terrestrial-derived organics (i.e., lignins and tannins) declined while microbial-originated organics (aliphatics) increased with increasing elevation. This suggested the gradual input of allochthonous materials from non-glacial environment and the degradation of microbe-derived compounds along lower elevations. Alpine glaciers are retreating as a result of climate change and they nourished numerous streams, rivers, and downstream-linked lakes. Therefore, the interpretations of the detailed molecular changes in glacier ice, glacial-fed streams, and alpine lakes on the Tibetan Plateau could provide broad insights for understanding the biogeochemical cycling of glacial DOM and assessing how the nature of DOM impacts fluvial ecosystems.