• 제목/요약/키워드: Flutter test

검색결과 67건 처리시간 0.028초

CFD/CSD 통합 연계기법을 이용한 횡방향 곡률이 있는 날개의 가상 플러터 시험 (Virtual Flutter Test of a Spanwise Curved Wing Using CFD/CSD Integrated Coupling Method)

  • 오세원;이정진;김동현
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.355-365
    • /
    • 2006
  • The coupled time-integration method with a staggered algorithm based on computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) has been developed in order to demonstrate physical vibration phenomena due to dynamic aeroelastic excitations. Virtual flutter tests for the spanwise curved ing model have been effectively conducted using the present advanced computational method with high speed parallel processing technique. In addition, the present system can simultaneously give a recorded data file to generate virtual animation for the flutter safety test. The results for virtual flutter test are compared with the experimental data of wind tunnel test. It is shown from the results that the effect of spanwise curvature have a tendency to decrease the flutter dynamic pressure for the same flight condition.

CFD/CSD 정밀 연계해석기법을 이용한 3차원 곡면날개의 가상 플러터 시험 (Virtual Flutter Test of Spanwise Curved Wings Using CFD/CSD Coupled Dynamic Method)

  • 김동현;오세원;김현정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.457-464
    • /
    • 2005
  • The coupled time-integration method with a staggered algorithm based on computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD) has been developed in order to demonstrate physical vibration phenomena due to dynamic aeroelastic excitations. Virtual flutter tests for the spanwise curved wing model have been effectively conducted using the present advanced computational methods with high speed parallel processing technique. In addition, the present system can simultaneously give a recorded data fie to generate virtual animation for the flutter safety test. The results for virtual flutter test are compared with the experimental data of wind tunnel test. It is shown from the results that the effect of spanwise curvature have a tendency to decrease the flutter dynamic pressure for the same flight condition.

  • PDF

Flutter suppression of long-span suspension bridge with truss girder

  • Wang, Kai;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • 제23권5호
    • /
    • pp.405-420
    • /
    • 2016
  • Section model wind tunnel test is currently the main technique to investigate the flutter performance of long-span bridges. Further study about applying the wind tunnel test results to the aerodynamic optimization is still needed. Systematical parameters and test principle of the bridge section model are determined by using three long-span steel truss suspension bridges. The flutter critical wind at different attack angles is obtained through section model flutter test. Under the most unfavorable working condition, tests to investigate the effects that upper central stabilized plate, lower central stabilized plate and horizontal stabilized plate have on the flutter performance of the main beam were conducted. According to the test results, the optimal aerodynamic measure was chosen to meet the requirements of the bridge wind resistance in consideration of safety, economy and aesthetics. At last the credibility of the results is confirmed by full bridge aerodynamic elastic model test. That the flutter reduced wind speed of long-span steel truss suspension bridges stays approximately between 4 to 5 is concluded as a reference for the investigation of the flutter performance of future similar steel truss girder suspension bridges.

Identification of 18 flutter derivatives by covariance driven stochastic subspace method

  • Mishra, Shambhu Sharan;Kumar, Krishen;Krishna, Prem
    • Wind and Structures
    • /
    • 제9권2호
    • /
    • pp.159-178
    • /
    • 2006
  • For the slender and flexible cable supported bridges, identification of all the flutter derivatives for the vertical, lateral and torsional motions is essential for its stability investigation. In all, eighteen flutter derivatives may have to be considered, the identification of which using a three degree-of-freedom elastic suspension system has been a challenging task. In this paper, a system identification technique, known as covariance-driven stochastic subspace identification (COV-SSI) technique, has been utilized to extract the flutter derivatives for a typical bridge deck. This method identifies the stochastic state-space model from the covariances of the output-only (stochastic) data. All the eighteen flutter derivatives have been simultaneously extracted from the output response data obtained from wind tunnel test on a 3-DOF elastically suspended bridge deck section-model. Simplicity in model suspension and measurements of only output responses are additional motivating factors for adopting COV-SSI technique. The identified discrete values of flutter derivatives have been approximated by rational functions.

지상 플러터 실험을 위한 시간 영역에서의 비정상 공기력 계산 (Computation of Unsteady Aerodynamic Forces in the Time Domain for GVT-based Ground Flutter Test)

  • 이주연;김종환;배재성
    • 항공우주시스템공학회지
    • /
    • 제10권1호
    • /
    • pp.29-34
    • /
    • 2016
  • Flutter wind-tunnel test is an expensive and complicated process. Also, the test model may has discrepancy in the structural characteristics when compared to those of the real model. "Dry Wind-Tunnel" (DWT) is an innovative testing system which consists of the ground vibration test (GVT) hardware system and software which computationally can be operated and feedback in real-time to yield rapidly the unsteady aerodynamic forces. In this paper, we study on the aerodynamic forces of DWT system to feedback in time domain. The aerodynamic forces in the reduced-frequency domain are approximated by Minimum-state approximation. And we present a state-space equation of the aerodynamic forces. With the two simulation model, we compare the results of the flutter analysis.

변위 시계열 데이터를 이용한 교량거더의 Flutter 계수 추정기법에 관한 연구 (A Study on the Identification Method for Flutter Derivatives of Bridge Girders using Displacement Time History Data)

  • 이재형;민원;이용재
    • 한국강구조학회 논문집
    • /
    • 제13권5호
    • /
    • pp.525-533
    • /
    • 2001
  • 교량의 내풍 안전성을 평가하기 위해서는 플러터 계수(Flutter Derivatives)의 안정적 추정이 필요하다. 본 논문에서는 풍동실험에서 얻어지는 시간영역에서의 데이터중 변위 시계열데이터를 이용해서 플러터 계수를 구하는 동특성 계수 측정기법 2가지를 검토하였다. 검토된 MITD(Modified Ibrahim Time Domain) 방법과 AKF(Adaptive Kalman Filtering) 방법은 2차원단면모형 실험으로부터 동시에 8개의 플러터 계수를 산출할 수 있는 유용한 방법이다. 제안된 방법의 실제상황에서의 적용성을 검토하기 위해서 Bandlimited Gausian white noise을 가상의 데이터에 첨가하여 수학적 시뮬레이션으로 잡음에 대한 안정성을 검증해 보았다. 그 결과 교량의 플러터 해석에서는 본 연구에서 검증된 MITD 방법을 통한 플러터 계수의 산출이 추전된다.

  • PDF

Blockage effects on aerodynamics and flutter performance of a streamlined box girder

  • Li, Yongle;Guo, Junjie;Chen, Xingyu;Tang, Haojun;Zhang, Jingyu
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.55-67
    • /
    • 2020
  • Wind tunnel test is one of the most important means to study the flutter performance of bridges, but there are blockage effects in flutter test due to the size limitation of the wind tunnel. On the other hand, the size of computational domain can be defined by users in the numerical simulation. This paper presents a study on blockage effects of a simplified box girder by computation fluid dynamics (CFD) simulation, the blockage effects on the aerodynamic characteristics and flutter performance of a long-span suspension bridge are studied. The results show that the aerodynamic coefficients and the absolute value of mean pressure coefficient increase with the increase of the blockage ratio. And the aerodynamic coefficients can be corrected by the mean wind speed in the plane of leading edge of model. At each angle of attack, the critical flutter wind speed decreases as the blockage ratio increases, but the difference is that bending-torsion coupled flutter and torsional flutter occur at lower and larger angles of attack respectively. Finally, the correction formula of critical wind speed at 0° angle of attack is given, which can provide reference for wind resistance design of streamlined box girders in practical engineering.

An Overview of Flutter Prediction in Tests Based on Stability Criteria in Discrete-Time Domain

  • Matsuzaki, Yuji
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권4호
    • /
    • pp.305-317
    • /
    • 2011
  • This paper presents an overview on flutter boundary prediction in tests which is principally based on a system stability measure, named Jury's stability criterion, defined in the discrete-time domain, accompanied with the use of autoregressive moving-average (AR-MA) representation of a sampled sequence of wing responses excited by continuous air turbulences. Stability parameters applicable to two-, three- and multi-mode systems, that is, the flutter margin for discrete-time systems derived from Jury's criterion are also described. Actual applications of these measures to flutter tests performed in subsonic, transonic and supersonic wind tunnels, not only stationary flutter tests but also a nonstationary one in which the dynamic pressure increased in a fixed rate, are presented. An extension of the concept of nonstationary process approach to an analysis of flutter prediction of a morphing wing for which the instability takes place during the process of structural morphing will also be mentioned. Another extension of analytical approach to a multi-mode aeroelastic system is presented, too. Comparisons between the prediction based on the digital techniques mentioned above and the traditional damping method are given. A future possible application of the system stability approach to flight test will be finally discussed.

컴플라이언트 메커니즘을 이용한 플러터 실험 장치 설계 (Flutter Experiment Equipment Design with Compliant Mechanism)

  • 이주호;이준성;성열훈;한재흥
    • 한국소음진동공학회논문집
    • /
    • 제22권4호
    • /
    • pp.393-400
    • /
    • 2012
  • This paper deals with a development of 2-DOF flutter experiment equipment which represents a 2-DOF typical section model. For a conventional 2-DOF flutter experiment equipment, it is hard to observe flutter boundary clearly due to the complexity of the experiment equipment. To refine our flutter experiment equipment system, a compliant mechanism based torsional spring is used. Well-designed extruded aluminum pipe works as a torsional spring. SolidWorks and ANSYS are used for modeling, analysis and design of the torsional spring. With this designed torsional spring, the 2-DOF flutter experiment equipment is developed and wind tunnel tests are performed. Clear flutter boundary which is estimated by classical flutter analysis is observed in the experiments.

컴플라이언트 메커니즘을 이용한 플러터 실험 장치 설계 (Flutter Experiment Equipment Design with Compliant Mechanism)

  • 이주호;이준성;성열훈;한재흥
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.429-434
    • /
    • 2012
  • This paper deals with a development of 2-DOF flutter experiment equipment which represents a 2-DOF typical section model. For a conventional 2-DOF flutter experiment equipment, it is hard to observe flutter boundary clearly due to the complexity of the experiment equipment. To refine our flutter experiment equipment system, a compliant mechanism based torsional spring is used. Well-designed extruded aluminum pipe works as a torsional spring. SolidWorks and ANSYS are used for modeling, analysis and design of the torsional spring. With this designed torsional spring, the 2-DOF flutter experiment equipment is developed and wind tunnel tests are performed. Clear flutter boundary which is estimated by classical flutter analysis is observed in the experiments.

  • PDF