• Title/Summary/Keyword: Fluorocarbon rubber

Search Result 5, Processing Time 0.023 seconds

Variable Temperature High-Resolution 19F MAS Solid-State NMR Characterization of Fluorocarbon Rubbers

  • Park, Tae-Joon;Choi, Sung-Sub;Kim, Ji-Sun;Kim, Yong-Ae
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2345-2350
    • /
    • 2011
  • Variable temperature high-resolution $^{19}F$ magic angle spinning (MAS) solid-state NMR spectroscopy was used to characterize fluorocarbon (FKM) rubbers. The high-resolution spectra of copolymers made from two monomers, vinylidene fluoride and hexafluoropropene, and terpolymers composed of vinylidene fluoride, hexafluoropropene, and tetrafluoroethylene, were obtained using MAS speeds of up to 18 kHz combined with high temperatures of up to 200 $^{\circ}C$ at a magnetic field strength of 9.4 Tesla. From these high resolution solid-state NMR spectra, we were able to assign the spectral peaks and differentiate the copolymer FKM from the terpolymer FKM. We also determined quantitatively the monomer compositions of each FKM rubber.

A Comparative Study on the Characteristics of Accelerated aging at Low and High Temperatures of the Fluorocarbon Rubber Composites (불소 고무복합체의 저온과 고온촉진노화 특성에 대한 비교 연구)

  • Park, JeongBae;Lee, BeomCheol;Jeong, YoonSeok;Park, SungHan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.915-922
    • /
    • 2017
  • The study on the thermal and oil resistance rubber composite, 2016. [6] predicted the lifetime of Fluorocarbon Rubber by accelerating aging at high temperature ($150^{\circ}C$, $175^{\circ}C$, $200^{\circ}C$). general rubber products are likely to exhibit different properties depending on the degradation factors such as temperature, humidity, ozone, light, emulsion, mechanical and electrical stress. To solve these problems, We compared the rate of change about tensile strength, elongation rate, volume change rate, weight change rate, thickness change rate, thermal conductivity in low temperature promoting aging on the basis of predictive lifetime of high temperature promoting aging. As a result of the review, the required life expectancy was satisfied, but there was a slight difference in the rate of change between the high-temperature promoted aging life result and the low temperature promoted aging life result. The cause was a reduction in "tensile strength / elongation" and an increase in "volume / weight / thickness" caused by the main chain decomposition of fluorine rubber due to aging at high temperature promoting aging. However, the low temperature promoting aging was caused by the curing reaction of fluorine rubber at $80^{\circ}C$. The tensile strength / elongation and volume / weight / thickness changes were small.

  • PDF

Hydrogen Effect Assessment of Fuel Supply Systems for Hydrogen Blended Natural Gas Vehicle (수소-천연가스 혼합연료 차량 연료 공급시스템 수소영향 평가)

  • Kang, SeungKyu;Kim, SangRyul
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.1-6
    • /
    • 2017
  • This study evaluated hydrogen effect of metal and non-metallic materials used in the hydrogen blended natural gas vehicle. Hydrogen penetrated concentration of 34Cr-Mo steel(850MPa tensile strength) for winter driving conditions was measured 0.0018ppm and summer driving conditions was 5.3ppm. The critical hydrogen concentration of high strength metal used in this study was measured 1.03ppm by CLT. Therefore, 34CrMo steel cas cause problems in the 30% HCNG(25MPa) environment. In case of the test for non-metallic materials, all materials met the criteria of the gas resistance test, but Fluorocarbon Rubber material had a significant change in the volume. So if it is used, extra care is needed.

Effect to Fillers for FKM (Fluorocarbon rubber) Gasket in Fuel Cell Stack (연료전지 스택 가스켓용 불소고무에 있어 충전제 종류에 따른 영향)

  • Hur, Byung-ki;Kang, Dong-gug;Yoo, Il-hyuk;Lee, Dong-won;Seo, Kwan-ho;Park, Lee-soon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.86-91
    • /
    • 2008
  • The rubber was compounded with carbon black and silica series-filler to examine the effects of the various rubber fillers on a gasket material's suitability and fuel cell stack conclusion. The evaluation of a long term heat resistance and oil resistance of the mixed rubber material was performed considering at the drive environment of PEMFC. Test results of compression set for the most influencing property of gasket showed that it was about less than 15% at long term of up to 1000 h. In this experiment, FEM analysis is carried out about the rubber material's properties depending on each filler and the stress which is produced when a gasket is contracted by using various filler. Sealing force was expected to maximum 2.5 MPa from minimum 0.2 MPa by using FEM (finite element method) at stacking gasket to gasket.

A Study on the Lifetime Estimation and Leakage Test of Rubber O-ring in Contacted with Fuel at Accelerated Thermal Aging Conditions (가속노화조건 하 연료접촉 고무오링의 수명예측 및 누유시험 연구)

  • Chung, Kunwoo;Hong, Jinsook;Kim, Young-wun;Han, Jeongsik;Jeong, Byunghun;Kwon, Youngil
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.222-228
    • /
    • 2019
  • As rubber products such as O-rings, which are also known as packings or toric joints, come in regular, long term contact with liquid fuel, they can eventually swell, become mechanically weakened, and occasionally crack; this diminishes both their usefulness and intrinsic lifetime and could cause leaks during the steady-state flow condition of the fuel. In this study, we evaluate the lifetime of such products through compression set tests of FKM, a family of fluorocarbon elastomer materials defined by the ASTM international standard D141; these materials have great compression, sunlight, and ozone resistance as well as a low gas absorption rate. In this process, O-rings are immersed in the liquid fuel of airtight containers that can be expressed as a compression set, and the liquid fuel leakage in a flow rig tester at variable temperatures over 12 months is investigated. Using the Power Law model, our study determined a theoretical O-ring lifetime of 2,647 years, i.e. a semi-permanent lifespan, by confirming the absence of liquid fuel leakage around the O-ring assembled fittings. These results indicate that the FKM O-rings are significantly compatible for fuel tests to evaluate long-term sealing conditions.