• Title/Summary/Keyword: Fluorite

Search Result 99, Processing Time 0.027 seconds

Fluid Inclusion Studies of the Fluorite Deposits in Korea (우리나라 형석광상(螢石鑛床)의 유체포유물(流體包有物) 연구(硏究))

  • Park, Hee In
    • Economic and Environmental Geology
    • /
    • v.9 no.1
    • /
    • pp.27-43
    • /
    • 1976
  • The flourite in Hwacheon, Hwanggangri and Keumsan district are major fluorite producing areas in Korea. The fluorite deposits of Hwacheon district are wholly fissure filling hydrothermal veins embedded in Precambrian gneiss and schists and Jurassic granites. Also some fluorite deposits are emplaced in felsite whose age is unknown. Emplacement of most fluorite veins of the district are controlled by EW fracture system. Fluorites are generally accompanied to chalcedonic quartz and also kaolinite, montmorillonite, dickite and calcite in parts. Vertical and lateral mineral zonings are not distinct. The fluorite deposits in the Hwanggangri district are wholly embedded in limestone and other calcareous sediments of Paleozoic Yeongweol Group. Most of the fluorite deposits belong to one of two categories which are steeply. dipping veins and gently dipping replacement deposits adjacent to Late Cretaceous(83-90mys) granite bodies. The strikes of fluorite veins of Hwanggangri district mostly occupy the fractures of $N30^{\circ}-40^{\circ}E$ and $N30^{\circ}-40^{\circ}W$ system. Fluorites are accompanied to calcite, milky quartz, chalcedonic quartz, and also montmorillonite, kaolinite in parts. But in some deposits, scheelite, various sulfide minerals and barite are accompanied. Emplacement of fluorite deposits are largely controlled by lithology and structures of this district. In some deposits fluorite veins gradate to scheelite veins and also telescoping of the mineral zones are found in this district. In the Keumsan district, fissure-filled fluorite veins and replacement deposits are mostly emplaced in limestone of Paleozoic Yeongweol Group, late Cretaceous quartz-porphyry, granite and sandstone. Some deposits are emplaced in Precambrian metasediments. Mineralogy and other characteristics of the deposits in this district is similar to those of Hwanggangri district. Fluid inclusion studies reveal the difference of salinities, $CO_2$ contents of ore fluid and temperatures during fluorite mineral deposition in the these districts. In Hwacheon district, ore-fluids were comparatively dilute brine and low $CO_2$ content. Filling temperatures ranges $104^{\circ}C$ to $170^{\circ}C$. In the Chuncheonshinpo mine, most deeply exploited one in this district, salinitles range 0.5-2. 2wt. % NaCl and filling temperatures range from $116^{\circ}C$ to $143^{\circ}C$. In the Hwanggangri district, ore fluids were complex and filling temperature ranges very widly. In the contact metasomatic fluorite deposits, ore fluid were NaCl rich brines with moderate $CO_2$ content and filling temperatures range from $285^{\circ}C$ to above $360^{\circ}C$. Fluids inclusions in tungsten and sulfide minerals bearing fluorite veins show high $CO_2$ content up to 31wt. %. Filling temperature ranges from $101^{\circ}C$ to $310^{\circ}C$. Fluids inclusions In mainly fluorite bearing veins were more dilute brine and low $CO_2$ contents. Filling temperatures range from $95^{\circ}C$ to $312^{\circ}C$. Filling temperature of fluid inclusions of Keumsan district are between $95^{\circ}C$ and $237^{\circ}C$. Data gathered from geologic, mineralogic and fluid inclusion studies reveal that fluorite mineralization in H wacheon district proceeded at low temperature with dilute brine and low $CO_2$ content. In Hwangganri district, fluorite mineralization proceeded by several pulse of chemically distinct ore fluids and formed the mineralogically different type of deposits around cooling granite pluton which emplaced comparatively shallow depth.

  • PDF

Electrical Conductivity of YO$_{1.5}$-TaO$_{2.5}$-MgO Based Fluorite Phase (YO$_{1.5}$-TaO$_{2.5}$-MgO 계 Fluorite 상의 전기전도도)

  • Choi, Soon-Mok;Kim, Shin;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.521-527
    • /
    • 1998
  • Electrical conductivity of fluorite structure phases in the {{{{ {Y }_{0.8 } }}{{{{ { Ta}_{ 0.2} {O }_{1.7 }-MgO }} system has been studied. Electrical conductivity of 8mol% MgO doped {{{{ {Y }_{0.8 } }} {{{{ {Ta }_{0.2 } {O }_{1.7 } }} fluorite phase was lower than that of the undoped {{{{ {Y }_{0.8 } }}{{{{ {Ta }_{0.2 } {O }_{1.7 } }} When {{{{ { P}_{H2O } }} was increased electrical conductivity of {{{{ {Y }_{0.8 } }}{{{{ {Ta }_{0.2 } {O }_{1.7 } }} increased linealy with {{{{ { P}`_{H2O } ^{ {1 } over {2 } } }} The {{{{ {Y }_{0.8 } }}{{{{ {Ta }_{0.2 } {O }_{1.7 } }} fluorite phase exhibited higher electrical conductivity in wet atmosphere than in dry atmosphere. The identical trend was observed from the 8mol% MgO doped {{{{ {Y }_{0.8 } }}{{{{ {Ta }_{0.2 } {O }_{1.7 } }} fluorite phase.

  • PDF

Geochemical Data Analysis of the Granitic Rocks Potentially Related to Fluorite Mineralization in the Geumsan District (금산지역 형석광화작용과 관련된 화강암질암의 지구화학적 자료 해석)

  • Chin, Ho-Ill;Chon, Hyo-Taek;Min, Kyoung-Won
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.369-379
    • /
    • 1995
  • About forty ore deposits of $CaF_2{\pm}Au{\pm}Ag{\pm}Cu{\pm}Pb{\pm}Zn$ are widely distributed in the Geumsan district and are believed to be genetically related to the Mesozoic Geumsan granitic rocks. Based on their petrogeochemistry and isotopic dating data, the granitic rocks in this district can be classified into two groups ; the Jurassic granitic rocks(equigranular leucocratic granite, porphyritic biotite granite, porphyritic pink-feldspar granite, seriate leucocratic granite) and the Cretaceous granitic rocks(seriate pink-feldspar granite, equigranular alkali-feldspar granite, equigranular pink-feldspar granite, miarolitic pink-feldspar granite, equigranular biotite granite). Spatial distribution of fluorite ore deposits, fluorine contents of granitic rocks and fracture patterns in this district suggest that three granitic rocks(equigranular biotite granite, equigranular pink-feldspar granite, miarolitic pink-feldspar granite) of the Cretaceous period be genetically related to the fluorite mineralization. In these fluorite-related granitic rocks, fluorine is most highly correlated with Cs(correlation coefficient(r)>0.9), and also highly with MnO, U, Sm, Yb, Lu, Zn, Y, Li(r>0.7). Statistically the variation of fluorine in the fluorite-related granitic rocks can be explained in terros of only three elements, such as Lu, CaO and Cs, and the fluorite-related granitic rocks can be discriminated from the fluorite-nonrelated granitic rocks by a linear functional equation of La, Ce, Cs and F($Z_{Ust}=-1.38341-0.00231F-0.19878Ce+0.38169La+0.54720Cs$). Also, equigranular alkali-feldspar granite is classified into the fluorite-related granitic rocks by means of the linear functional equation($Z_{Ust}$).

  • PDF

A brief review on the effect of impurities on the atomic layer deposited fluorite-structure ferroelectrics (원자층증착법으로 증착된 강유전성 플루오라이트 구조 강유전체 박막의 불순물 효과)

  • Lee, Dong Hyun;Yang, Kun;Park, Ju Yong;Park, Min Hyuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.169-181
    • /
    • 2020
  • The ferroelectricity in emerging fluorite-structure oxides such as HfO2 and ZrO2 has attracted increasing interest since 2011. Different from conventional ferroelectrics, the fluorite-structure ferroelectrics could be reliably scaled down below 10 nm thickness with established atomic layer deposition technique. However, defects such as carbon, hydrogen, and nitrogen atoms in fluorite-structure ferroelectrics are reported to strongly affect the nanoscale polymorphism and resulting ferroelectricity. The characteristic nanoscale polymorphism and resulting ferroelectricity in fluorite-structure oxides have been reported to be influenced by defect concentration. Moreover, the conduction of charge carriers through fluorite-structure ferroelectrics is affected by impurities. In this review, the origin and effects of various kinds of defects are reviewed based on existing literature.

A Brief Review on Polarization Switching Kinetics in Fluorite-structured Ferroelectrics (플루오라이트 구조 강유전체 박막의 분극 반전 동역학 리뷰)

  • Kim, Se Hyun;Park, Keun Hyeong;Lee, Eun Been;Yu, Geun Taek;Lee, Dong Hyun;Yang, Kun;Park, Ju Yong;Park, Min Hyuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.330-342
    • /
    • 2020
  • Since the original report on ferroelectricity in Si-doped HfO2 in 2011, fluorite-structured ferroelectrics have attracted increasing interest due to their scalability, established deposition techniques including atomic layer deposition, and compatibility with the complementary-metal-oxide-semiconductor technology. Especially, the emerging fluorite-structured ferroelectrics are considered promising for the next-generation semiconductor devices such as storage class memories, memory-logic hybrid devices, and neuromorphic computing devices. For achieving the practical semiconductor devices, understanding polarization switching kinetics in fluorite-structured ferroelectrics is an urgent task. To understand the polarization switching kinetics and domain dynamics in this emerging ferroelectric materials, various classical models such as Kolmogorov-Avrami-Ishibashi model, nucleation limited switching model, inhomogeneous field mechanism model, and Du-Chen model have been applied to the fluorite-structured ferroelectrics. However, the polarization switching kinetics of fluorite-structured ferroelectrics are reported to be strongly affected by various nonideal factors such as nanoscale polymorphism, strong effect of defects such as oxygen vacancies and residual impurities, and polycrystallinity with a weak texture. Moreover, some important parameters for polarization switching kinetics and domain dynamics including activation field, domain wall velocity, and switching time distribution have been reported quantitatively different from conventional ferroelectrics such as perovskite-structured ferroelectrics. In this focused review, therefore, the polarization switching kinetics of fluorite-structured ferroelectrics are comprehensively reviewed based on the available literature.

A Study on the Genesis of Fluorite Deposits of South Korea (남한(南韓)의 형석광상(螢石鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Chi, Jeong Mahn
    • Economic and Environmental Geology
    • /
    • v.8 no.1
    • /
    • pp.25-56
    • /
    • 1975
  • Most fluorite deposits of South Korea are distributed in three metallogenic zones namly as: Hwacheon, Hwangangni and Geumsan metallogenic zones. Fluorite deposits of each zone show The characteristic features owing to the geological setting, the structural patterns and their forming processes. deposits of the Hwacheon metallogenic zone are wholly fissure filling hydrothermal veins emThe bedded in shear fractures of the granite gneiss or schists of Precambrian age or in the cooling fractures of the granite and acidic hypabyssal rocks which are assumed to be a differentiated sister rock of the granite. Localization of most fluorite veins of the region is structurally controlled by NW and EW fracture systems and genetically related to the granite intrusion which ascertained as motivating rock of the fluorite mineralization. Fluorites are in most cases accompanied by quartz, chalcedony mainly and rarely agate, calcite, barite and sulphide base metals in some localities. The deposits of the Hwangangni metallogenic zone were formed at the last stage of hydrothermal polymineralization of W, Mo, Cu, Pb, Zn. The majority of the fluorite ore bodies were originated from replacement in limestone beds of Great Limestone Series or in calcareous interbeds of metasediments, whereas some cavity-filling ore bodies were embedded in phyllites and schists of the Ockcheon system and along the fissures in the replaced beds which were originated by volume decrease. The localization of fluorite deposits in this region is genetically related to the Moongyong granite which has been dated as middle Cretaceous, and controlled structurally by the $N20^{\circ}{\sim}50^{\circ}W$ extension fracture system or axial planes of folds, and by faults of NE direction that acted as paths of ore solution. The deposits of the Geumsan metallogenic zone are seemed to be formed through the similar process as that of Hwangangni metallogenic zone, but characteristic distinctions are in that they are more prevailing fracture filling veins and large number of the deposits are localized in roof-pendants or xenolithes of limestone in granites and porphyries. Igneous rocks that presumably motivated the mineraltzation are middle Cretaceous Geumsan granite and porphyries. Metallogenic epoch of the fluorite mineralization of South Korea are puesumably limited in early-middle Cretaceous. Studies of the fluid inclusions in fluorites of the region reveal that the homogenization temperature of the fluorite deposits are as follows: Hwacheon metallogenic zone : $95^{\circ}C{\sim}165^{\circ}C$; Hwangangni metallogenic zone : $97^{\circ}C{\sim}235^{\circ}C$; Geumsan metallogenic zone : $93^{\circ}C{\sim}236^{\circ}C$. Judging from the above results, the deposits of the Hwancheon region were formed at the epithermal stage, and those in the Hwangangni and Geumsan regions, were deposited at epithermal stage preceded by mesothermal mineralization of small scale in which some sulphide minerals were deposited. The analytical data of minor elements in the fluorites reveal that ore solutions of Hwangangni metallogenic zone seemed to be emanated in more acidic stage of magma differentiation than Hwacheon metallogenic zone did.

  • PDF

Electrocaloric Effect in Emerging Fluorite-Structure Ferroelectrics (새로운 플루오라이트 구조 강유전체의 Electrocaloric Effect)

  • Yang, Kun;Park, Ju Yong;Lee, Dong Hyun;Park, Min Hyuk
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.480-488
    • /
    • 2020
  • The electrocaloric effect can be observed in pyroelectric materials based on conversion between electrical and thermal energy, and can be utilized for the future environment-friendly refrigeration technology. Especially, a strong electrocaloric effect is expected in materials in which field-induced phase transition can be achieved. Emerging fluorite-structure ferroelectrics such as doped hafnia and zirconia, first discovered in 2011, are considered the most promising materials for next-generation semiconductor devices. Besides application of fluorite-structure ferroelectrics for semiconductor devices based on their scalability and CMOS-compatibility, field-induced phase transition has been suggested as another interesting phenomenon for various energy-related applications such as solid-state cooling with electrocaloric effect as well as energy conversion/storage and IR/piezoelectric sensors. Especially, their giant electrocaloric effect is considered promising for solid-state-cooling. However, the electrocaloric effect of fluorite-structure oxides based on field-induced phase transition has not been reviewed to date. In this review, therefore, the electrocaloric effect accompanied by field-induced phase transition in fluorite-structure ferroelectrics is comprehensively reviewed from fundamentals to potential applications.

Fluid Inclusion Studies on the Wolak Tungsten-Molybdenum Deposits, Korea (월악 중석-몰리브덴 광상의 유체포유물 연구)

  • Lee, In Sung;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.15 no.1
    • /
    • pp.17-32
    • /
    • 1982
  • The Wolak tungsten-molybdenum deposits are tungsten-molybdenum bearing quartz veins which filled the fractures in Pre-Cambrian pebble-bearing calcareous hornfels, hornfels and Cretaceous granite. There are two vein groups in this mine, Dongsan vein group in the west and Kwangcheon vein group in the east. The ore minerals are wolframite, scheelite, molybdenite, native bismuth, bismuthinite, pyrite, arsenopyrite, chalcopyrite, cubanite, stannite, pyrrhotite, sphalerite, galena, marcasite, Pb-Bi sulfosalt and ilmenite. Quartz, calcite, beryl, fluorite, muscovite, rhodochrosite and siderite are gangue minerals. Fluid inclusion studies were carried out for the quartz, beryl, scheelite, early and late fluorite. Fluid inclusion studies reveal that liquid-gas inclusions are most common and occur in all of the minerals examined. Filling degree of the inclusions in the late fluorite is much higher than that of the inclusions in quartz and early fluorite. Liquid $CO_2$ bearing liquid-gas inclusions occur in quartz and early fluorite. Liquid, gas and solid phase inclusions occur in quartz, beryl and scheelite. Salinities of inclusions in quartz and beryl from Dongsan vein group range from 3.9 to 8.0, from 5.3 to 7.7 wt.% NaCl equivalent respectively. Salinities in the late fluorite range from 1.5 to 3.2 wt.% NaCl equivalent. In Kwangcheon vein group salinities range from 3.9 to 9.6 wt.% NaCl equivalent in quartz, from 2.8 to 7.3 wt.% NaCl equivalent in early fluorite, from 1.3 to 1.5 wt.% NaCl equivalent in late fluorite. Homogenization temperatures of inclusions range from $239^{\circ}$ to higher than $360^{\circ}C$ in quartz, over $360^{\circ}C$ in scheelite, from $288^{\circ}C$ to higher than $360^{\circ}C$ in beryl, and from $159^{\circ}$ to $202^{\circ}C$ in late fluorite of the Dongsan vein group. In Kwangcheon vein group, homo genization temperatures of inclusions range from $240^{\circ}C$ to higher than $360^{\circ}C$ in quartz and from $240^{\circ}$ to $328^{\circ}C$ in early fluorite. As a whole, in Dongsan and Kwangcheon vein groups it seems that there are no distinct differences in mineralogy, salinities and homogenization temperatures. No distinct variations in homogenization temperatures are revealed through about 300 m vertically in both district. The faint trend of increase in salinities in the lower level can be detected. The salinity, $CO_2$ content and the temperature of ore fluid were much higher in the early vein stage and then dropped off in the late stage of mineralization as represented by the quartz and fluorite inclusion data.

  • PDF

Stable Isotope and Fluid Inclusion Studies of the Manjang Copper Mine, South Korea (만장동광산(萬藏銅鑛山)에 대(對)한 유체포유물(流體包有物) 및 안정동위원소분석(安定同位元素分析) 연구(硏究))

  • Kim, Kyu Han;Shin, Jeung Sook
    • Economic and Environmental Geology
    • /
    • v.20 no.3
    • /
    • pp.169-177
    • /
    • 1987
  • The Manjang copper magnetite-fluorite orebodies are imbedded within the limestone beds of the Hwajonri Formation. The ore deposits are characterized by magnetite-fluorite bearing skarn orebody in the west orebody and copper sulfide veins of the central and main orebodies. This study includes fluid inclusion geothermometry, salinity analysis, stable isotope analysis, and application of phase rule to mineral associations in skarn ore. Ore minerals are closely associated with the skarn silicates such as garnet, wollastonite and epidote. Magnetite and fluorite are remarkable in the west orebody whereas chalcopyrite is dominate in the central and main orebodies where pyrite and pyrrhotite also appear as sulfide gangues. Homogenization temperature and salinity of fluid inclusions are measured ranging between $240^{\circ}C$ and $350^{\circ}C$, 6.3~12.9 wt. percent in quartz and $220^{\circ}C$ and $350^{\circ}C$, 8.5~9.9wt. percent in fluorite, respectively. This indicates that the filling temperature and salinity are higher in quartz than in fluorite with the tendency of both to be linearly decreased suggesting an attribution of meteoric water to the mineralization. $T-fo_2$ diagram in the Ca-Fe-Si system at 1 kb and $Xco_2$=0.02 shows that the mineral assemblages with decreasing temperature are andradite-hedenbergite-calcite, hedenbergite-andradite-quartz, magnetite-andradite-quartz, and magnetite-quartz-calcite, indicating that magnetite crystallizes mostly late skarn stage at lower temperature. According to the carbon and oxygen isotopic values of the host limestone and calcite in ores, the sourec of carbon might be mixture of host limestone and deep seated carbons. Sulfur isotope data imply that ore fluids be relatively homogeneous in sulfur isotopic composition, mainly derived from igneous source.

  • PDF

Study on Fluid Inclusions in Fluorite from the Sinpo Mine (신포광산(新浦鑛山) 형석(螢石)의 유체포유물(流體包有物에)에 관(關)한 연구(硏究))

  • Lee, Choon Woo
    • Economic and Environmental Geology
    • /
    • v.2 no.4
    • /
    • pp.1-21
    • /
    • 1969
  • The Sin po fluorite deposit is of a fissure vein type which strikes $N75^{\circ}E$, dips $80^{\circ}SE$, and is embedded in the pre-Cambrian crystalline schist. The vein is 1 meter in average in thickness, about 800 meters in length and nearly 400 meters in depth. Narrow veins of crustified fluorites and agatic quartz are discontinuously embedded in the quartz gangue. Two-phase fluid inclusions, which are available for the homogenization method by using the Heating Stage Microscope 350, are found in the fluorite crystals. Most of the fluid inclusions are primary in origin and mainly composed of liquid phase associated with minor gas phase. They are tetrahedral, rounded-tubular, wedge shaped, rectangulartrapezoid, and irregular in shape. The maximum diameter of inclusions is 0.5mm and the minimum, 0.03mm, ranging from 0.2mm to 0.08mm in an average. The homogenization temperatures obtained from the test are $135-147^{\circ}C$, $125-138^{\circ}C$, $121-137^{\circ}C$, $116-133^{\circ}C$ and $106-128^{\circ}C$ in greenish, bluish, violet, light grayish blue, colorless and pinkish fluorites respectively. The range of formation temperatures of fluorites is $106-147^{\circ}C$. Therefore, the fluorite deposit of Sinpo Mine is considered to be of low temperature hydrothermal origin. The isothermal lines were drawn on the longitudinal section of the vein from the data of homogenization test. According to the results, the central and lower parts of the ore shoot in the west ore body show the higher temperatures of $130-138^{\circ}C$ and the peripheral and upper parts of it show the lower temperatures of $108-128^{\circ}C$. It seems that the isothermal trend roughly coinside with the pitch of the ore shoot.

  • PDF