Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.9.480

Electrocaloric Effect in Emerging Fluorite-Structure Ferroelectrics  

Yang, Kun (School of Materials Science and Engineering, Pusan National University)
Park, Ju Yong (School of Materials Science and Engineering, Pusan National University)
Lee, Dong Hyun (School of Materials Science and Engineering, Pusan National University)
Park, Min Hyuk (School of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.30, no.9, 2020 , pp. 480-488 More about this Journal
Abstract
The electrocaloric effect can be observed in pyroelectric materials based on conversion between electrical and thermal energy, and can be utilized for the future environment-friendly refrigeration technology. Especially, a strong electrocaloric effect is expected in materials in which field-induced phase transition can be achieved. Emerging fluorite-structure ferroelectrics such as doped hafnia and zirconia, first discovered in 2011, are considered the most promising materials for next-generation semiconductor devices. Besides application of fluorite-structure ferroelectrics for semiconductor devices based on their scalability and CMOS-compatibility, field-induced phase transition has been suggested as another interesting phenomenon for various energy-related applications such as solid-state cooling with electrocaloric effect as well as energy conversion/storage and IR/piezoelectric sensors. Especially, their giant electrocaloric effect is considered promising for solid-state-cooling. However, the electrocaloric effect of fluorite-structure oxides based on field-induced phase transition has not been reviewed to date. In this review, therefore, the electrocaloric effect accompanied by field-induced phase transition in fluorite-structure ferroelectrics is comprehensively reviewed from fundamentals to potential applications.
Keywords
electrocaloric effect; ferroelectric; pyroelectric; $HfO_2$; $ZrO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder and U. Bottger, Appl. Phys. Lett., 99, 102903 (2011).   DOI
2 M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Muller, A. Kersch, U. Schroeder, T. Mikolajick and C. S. Hwang, Adv. Mater., 27, 1811 (2015).   DOI
3 O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda and T. Kikegawa, J. Am. Ceram. Soc., 84, 1369 (2001).   DOI
4 O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda and T. Kikegawa, Phys. Rev. B: Condens. Matter Mater. Phys., 63, 174108 (2001).   DOI
5 U. Schroeder, E. Yurchuk, J. Muller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M. I. Popovici, S. V. Kalinin and T. Mikolajick, Jpn. J. Appl. Phys., 53, 08LE02 (2014).   DOI
6 M. H. Park, T. Schenk, C. M. Fancher, E. D. Grimley, C. Zhou, C. Richter, J. M. LeBeau, J. L. Jones, T. Mikolajick and U. Schroeder, J. Mater. Chem. C, 5, 4677 (2017).   DOI
7 P. Polakowski and J. Muller, Appl. Phys. Lett., 106, 232905 (2015).   DOI
8 T. Mittmann, M. Materano, P. D. Lomenzo, M. H. Park, I. Stolichnov, M. Cavalieri, C. Zhou, C.-C. Chung, J. L. Jones, T. Szyjka, M. Muller, A. Kersch, T. Mikolajick and U. Schroeder, Adv. Mater. Interfaces, 6, 1900042 (2019).
9 B. T. Lin, Y.-W. Lu, J. Shieh and M.-J. Chen, J. Eur. Ceram. Soc., 37, 1135 (2017).   DOI
10 S. Starschich, T. Schenk, U. Schroeder and U. Boettger, Appl. Phys. Lett., 110, 182905 (2017).   DOI
11 X. Sang, E. D. Grimley, T. Schenk, U. Schroeder and J. M. LeBeau, Appl. Phys. Lett., 106, 162905 (2015).   DOI
12 Y. Wei, P. Nukala, M. Salverda, S. Matzen, H. J. Zhao, J. Momand, A. S. Everhardt, G. Agnus, G. R. Blake, P. Lecoeur, B. J. Kooi, J. Iniguez, B. Dkhil and B. Noheda, Nat. Mater., 17, 1095 (2018).   DOI
13 K. D. Kim, M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, Y. H. Lee, S. D. Hyun, T. Gwon and C. S. Hwang, J. Mater. Chem. C, 4, 6864 (2016).   DOI
14 M. H. Park and C. S. Hwang, Rep. Prog. Phys., 82, 124502 (2019).   DOI
15 M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim and C. S. Hwang, Nano Energy, 12, 131 (2015).   DOI
16 M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, Y. H. Lee, S. D. Hyun and C. S. Hwang, Adv. Mater., 28, 7956 (2016).   DOI
17 M. H. Park, T. Schenk, M. Hoffmann, S. Knebel, J. Gartner, T. Mikolajick and U. Schroeder, Nano Energy, 36, 381 (2017).   DOI
18 M. Hoffmann, U. Schroeder, C. Kunneth, A. Kersch, S. Starschich, U. Bottger and T. Mikolajick, Nano Energy, 18, 154 (2015).   DOI
19 M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim and C. S. Hwang, Adv. Energy Mater., 4, 1400610 (2014).   DOI
20 K. D. Kim, Y. H. Lee, T. Gwon, Y. J. Kim, H. J. Kim, T. Moon, S. D. Hyun, H. W. Park, M. H. Park and C. S. Hwang, Nano Energy, 39, 390 (2017).   DOI
21 M. H. Park, C. S. Hwang, Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics, p. 295, B.-E. Park, H. Ishiwara, M. Okuyama, S. Sakai and S.-M. Yoon, vol. 131, Springer, Dordrecht (2016).
22 M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder and C. S. Hwang, MRS Commun., 8, 795 (2018).   DOI
23 T. Mikolajick, S. Slesazeck, M. H. Park and U. Schroeder, MRS Bull., 43, 340 (2018).   DOI
24 M. H. Park, T. Mikolajick, U. Schroeder and C. S. Hwang, Phys. Status Solidi RRL, 13, 1900177 (2019).   DOI
25 M. H. Park, T. Shimizu, H. Funakubo, U. Schroeder, Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, p.193-216, U. Schroeder, C. S. Hwang, H. Funakubo (eds), Woodhead Publishing, The Officers' Mess Business Centre, Royston Road, Duxford, CB22 4QH, United Kingdom (2019).
26 T. Shimizu, K. Katayama, T. Kiguchi, A. Akama, T. J. Konno, O. Sakata and H. Funakubo, Sci. Rep., 6, 32931 (2016).   DOI
27 M. H. Park, C. C. Chung, T. Schenk, C. Richter, M. Hoffmann, S. Wirth, J. L. Jones, T. Mikolajick and U. Schroeder, Adv. Electron. Mater., 4, 1700489 (2018).   DOI
28 R. Materlik, C. Kunneth and A. Kersch, J. Appl. Phys., 117, 134109 (2015).   DOI
29 T. D. Huan, V. Sharma, G. A. Rossetti Jr. and R. Ramprasad, Phys. Rev. B: Condens. Matter Mater. Phys., 90, 064111 (2014).   DOI
30 S. -G. Lu, Q. Zhang, Adv. Mater., 21, 1983 (2009).   DOI
31 Y. L. Li, L. E. Cross and L. Q. Chen, J. Appl. Phys., 98, 064101 (2005).   DOI
32 G. Ackay, S. P. Alpay, J. V. Mantese and G. A. Rossetti Jr., Appl. Phys. Lett., 90, 252909 (2007).   DOI
33 X. Wu and G. Li, Adv. Mater. Res., 335-336, 1004 (2011).   DOI
34 M. A. Hamad, Phase Transitions, 85, 159 (2012).   DOI
35 B. Li, W. J. Ren, X. W. Wang, H. Meng, X. G. Liu, Z. J. Wang and Z. D. Zhang, Appl. Phys. Lett., 96, 102903 (2010).   DOI
36 B. Neese, B. Chu, S. -G. Lu,Y. Wang, E. Furman and Q. M. Zhang, Science, 321, 821 (2008).   DOI
37 Y. Bai, G.-P. Zheng, K. Ding, L. Qiao, S.-Q. Shi and D. Guo, J. Appl. Phys., 110, 094103 (2011).   DOI
38 A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore and N. D. Mathur, Science, 311, 1270 (2006).   DOI
39 H. Chen, T.-L. Ren, X.-M. Wu, Y. Yang and L.-T. Liu, Appl. Phys. Lett., 94, 182902 (2009).   DOI
40 L. D. Landau, Phys. Z. Sowjet., 11, 26 (1937).
41 A. F. Devonshire, Philos. Mag., 40, 1040 (1949).   DOI
42 M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, p.1-42, Oxford University Press, Oxford, UK (2001).
43 X. Lu, H. Li and W. Cao, J. Appl. Phys., 114, 224106 (2013).   DOI
44 N. A. Pertsev, A. G. Zembilgotov and A. K. Tagantsev, Phys. Rev. Lett., 80, 1988 (1998).   DOI
45 S. Ducharme, V. M. Fridkin, A. V. Bune, S. P. Palto, L. M. Blinov, N. N. Petukhova and S. G. Yudin, Phys. Rev. Lett., 84, 175 (2000).   DOI
46 L. Li, O. Niehaus, M. Kersting and R. Pottgen, Appl. Phys. Lett., 104, 092416 (2014).   DOI
47 M.-H. Phan and S.-C. Yu, J. Magn. Magn. Mater., 308, 325 (2007).   DOI
48 V. K. Pecharsky, K. A. Gschneidner and A. O. Tsokol, Rep. Prog. Phys., 68, 1479 (2005).   DOI
49 M. H. Phan, H. X. Peng and S. C. Yu, J. Appl. Phys., 97, 10M306 (2005).   DOI
50 M. H. Phan, N. D. Tho, N. Chau, S. C. Yu and M. Kurisu, J. Appl. Phys., 97, 3215 (2005).
51 S. Starshich, T. Schenk, U. Schroeder and U. Boettger, Appl. Phys. Lett., 110, 182905 (2017).   DOI
52 S. Linsinger, W. Hermes, M. Eul and R. Pottgen, J. Appl. Phys., 108, 043903 (2010).   DOI