Browse > Article
http://dx.doi.org/10.5695/JKISE.2020.53.4.169

A brief review on the effect of impurities on the atomic layer deposited fluorite-structure ferroelectrics  

Lee, Dong Hyun (Department of Materials Science and Engineering, Pusan National University)
Yang, Kun (Department of Materials Science and Engineering, Pusan National University)
Park, Ju Yong (Department of Materials Science and Engineering, Pusan National University)
Park, Min Hyuk (Department of Materials Science and Engineering, Pusan National University)
Publication Information
Journal of the Korean institute of surface engineering / v.53, no.4, 2020 , pp. 169-181 More about this Journal
Abstract
The ferroelectricity in emerging fluorite-structure oxides such as HfO2 and ZrO2 has attracted increasing interest since 2011. Different from conventional ferroelectrics, the fluorite-structure ferroelectrics could be reliably scaled down below 10 nm thickness with established atomic layer deposition technique. However, defects such as carbon, hydrogen, and nitrogen atoms in fluorite-structure ferroelectrics are reported to strongly affect the nanoscale polymorphism and resulting ferroelectricity. The characteristic nanoscale polymorphism and resulting ferroelectricity in fluorite-structure oxides have been reported to be influenced by defect concentration. Moreover, the conduction of charge carriers through fluorite-structure ferroelectrics is affected by impurities. In this review, the origin and effects of various kinds of defects are reviewed based on existing literature.
Keywords
Ferroelectric; Impurity; Polymorphism; $HfO_2$; $ZrO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. H. Park, Y. H. Lee, H. J. Kim, T. Schenk, W. Lee, K. D. Kim, F. P. G. Fengler, T. Mikolajick, U. Schroeder, C. S. Hwang, Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment, Nanoscale 9 (28), (2017), 9973-9986.   DOI
2 E. Cho, B. Lee, C.-K. Lee, S. Han, S. H. Jeon, B. H . Park a nd Y.-S. Kim, Appl. Phys. Lett., 2008, 92, 233118.   DOI
3 Kunneth, C., Materlik, R., Falkowski, M. & Kersch, A. Impact of Four-Valent Doping on the Crystallographic Phase Formation for Ferroelectric $HfO_2$ from First-Principles: Implications for Ferroelectric Memory and Energy-Related Applications. ACS Appl. Nano Mater. 1 (2018) 254-264.   DOI
4 Zhao, X., Vanderbilt, D. First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys. Rev. B - Condens. Matter Mater. Phys. 65 (2002) 1-4.
5 H. S. Jung, S. H. Jeon, H. K. Kim, I. H. Yu, S. Y. Lee, J. Lee1, Y. J. Chung, D. Y. Cho, N. I. Lee, T. J. Park, J. H. Choi, S. Han, C. S. Hwang, The Impact of Carbon Concentration on the Crystalline Phase and Dielectric Constant of Atomic Layer Deposited $HfO_2$ Films on Ge Substrate. ECS J. Solid State Sci. Technol. 1 (2012) N33-N37.   DOI
6 K. D. Kim, Y. H. Lee, T. h. Gwon, Y. J. Kim, H. J. Kim, T. h. Moon, S. D. Hyun, H. W. Park, M. H. Park, C. S. Hwang, Scale-up and optimization of $HfO_2-ZrO_2$ solid solution thin films for the electrostatic supercapacitors. Nano Energy 39 (2017) 390-399.   DOI
7 D. Necas, P. Klapetek, Gwyddion: An opensource software for SPM data analysis. Cent. Eur. J. Phys. 10 (2012) 181-188.
8 D. Y. Cho, H. S. Jung, I. H. Yu, J. H. Yoon, H. K. Kim, S. Y. Lee, S. H. Jeon, S. Han, J. H. Kim, T. J. Park, B. G. Park, C. S. Hwang, Stabilization of tetragonal $HfO_2$ under low active oxygen source environment in atomic layer deposition. Chem. Mater. 24 (2012) 3534-3543.   DOI
9 U. Schroeder, M. Materano, T. Mittmann, P. D. Lomenzo, T. Mikolajick, A. Toriumi. Recent progress for obtaining the ferroelectric phase in hafnium oxide-based films: Impact of oxygen and zirconium. Jpn. J. Appl. Phys. (2019). 58.
10 K. D. Kim, M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, Y. H. Lee, S. D. Hyun, T. Gwon, C. S. Hwang, Ferroelectricity in undoped-$HfO_2$ thin films induced by deposition temperature control during atomic layer deposition, J. Mater. Chem. C, 4 (2016) 6864-6872.   DOI
11 Aggarwal, S., S. R. Perusse, C. W. Tipton, R. Ramesh, H. D. Drew, T. Venkatesan, D. B. Romero, Vyacheslav B. Podobedov, Alfons Weber. Effect of hydrogen on Pb(Zr,Ti)$O_3$-based ferroelectric capacitors. Appl. Phys. lett. 73 (1998) 1973-1975.   DOI
12 Shimamoto, Y., K. Kushida-Abdelghafar, H. Miki, Y. Fujisaki. $H_2$ damage of ferroelectric Pb (Zr, Ti) $O_3$ thin-film capacitors-The role of catalytic and adsorptive activity of the top electrode. Appl. Phys. Lett. 70 (1997) 3096-3097.   DOI
13 Kushida-Abdelghafar, Keiko, Hiroshi Miki, Kazuyoshi Torii, Yoshihisa Fujisaki. Electrodeinduced degradation of $Pb(Zr_{x}Ti_{1-x})O_3$ (PZT) polarization hysteresis characteristics in Pt/PZT/Pt ferroelectric thin-film capacitors, Appl. Phys. Lett. 69 (1996) 3188-3190.   DOI
14 M. H Park, H. J. Kim, Y. J. Kim, W. K. Lee, T. H. Moon, K. D. Kim, C. S. Hwang. Study on the degradation mechanism of the ferroelectric properties of thin $Hf_{0.5}Zr_{0.5}O_2$ films on TiN and Ir electrodes. Appl. Phys. Lett. 105 (2014) 072902.   DOI
15 J. G. Kang, E. C. Lee, K. J. Chang, Y. G. Jin. H-related defect complexes in $HfO_2$: A model for positive fixed charge defects. Appl. Phys. Lett. 84 (2004) 3894-3896.   DOI
16 S. Y. Oh, J.H. Song, I. K. Yoo, H. S. Hwang. Improved Endurance of $HfO_2$-based metal-ferroelectric-insulator-silicon structure by high-pressure hydrogen annealing. IEEE Electron Device Letters 40 (2019) 1092-1095.   DOI
17 L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita and A. Toriumi, Ferroelectric phase stabilization of $HfO_2$ by nitrogen doping, Appl. Phys. Express 9 (2016) 091501.   DOI
18 S. J. Kim, Jaidah Mohan, H. S. J. Kim, J. B. Lee, S. M. Hwang, D. Narayan, J. G. Lee. Effect of hydrogen derived from oxygen source on low-temperature ferroelectric TiN/$Hf_{0.5}Zr_{0.5}O_2$/TiN capacitors. Appl. Phys. Lett. 115 (2019) 182901.   DOI
19 M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, Y. H. Lee, S. D. Hyun, C. S. Hwang. Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric $Hf_{0.5}Zr_{0.5}O_2$ thin films. J. Mater. Chem. C 3 (2015) 6291-6300.   DOI
20 R. Batra, T. D. Huan, G. A. Rossetti and R. Ramprasad, Dopants Promoting Ferroelectricity in Hafnia: Insights from a comprehensive Chemical Space Exploration, Chem. Mater. 29 (2017) 9102-9109.   DOI
21 L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita and A. Toriumi, Kinetic pathway of the ferroelectric phase formation in doped $HfO_2$ films, J. Appl. Phys. 122 (2017) 124104.   DOI
22 W. Hamouda, A. Pancotti, C. Lubin, L. Tortech, C. Richter, T. Mikolajick, U. Schroeder and N. Barrett, Physical chemistry of the TiN/$Hf_{0.5}Zr_{0.5}O_2$ interface, J. Appl. Phys. 127 (2020) 064105.   DOI
23 J. L. Gavartin, A. L. Shluger, A. S. Foster and G. I. Bersuker, The role of nitrogen-related defects in high-k dielectric oxides: Densityfunctional studies, J. Appl. Phys. 97 (2005) 053704.   DOI
24 Y. Zhou, Y. K. Zhang, Q. Yang, J. Jiang, P. Fan, M. Liao and Y. C. Zhou, The effects of oxygen vacancies on ferroelectric phase transition of $HfO_2$-based thin film from first-principle, Comput. Mater. 167 (2019) 143-150.   DOI
25 X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T.E. Seidel, J.T. Barton, D. Pang and R.G. Gordon, ALD of Hafnium Oxide Thin Films from Tetrakis (ethylmethylamino) hafnium and Ozone, ECS J. Solid State Sci. Technol. 152 (2005) G213.
26 X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T.E. Seidel, J.T. Barton, D. Pang and R.G. Gordon, Fluid Imprint and Inertial Switching in Ferroelectric La:$HfO_2$ Capacitors, ACS Appl. Mater. Interfaces 38 (2019) 35115-35121.
27 M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, C. S. Hwang, Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric $Hf_xZr_{1-x}O_2$ films, Nano Energy, 12 (2015) 131-140.   DOI
28 T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, U. Bottger, Ferroelectricity in hafnium oxide thin films, Appl. Phys. Lett. 99 (2011) 102903.   DOI
29 M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, J. Muller, A. Kersch, U. Schroeder, T. Mikolajick, C.S. Hwang, Ferroelectricity and Antiferroelectricity of Doped Thin $HfO_2$-Based Films, Adv. Mater. 27 (2015) 1811-1831.   DOI
30 M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, C. S. Hwang, Thin $Hf_x\;Zr_{1-x}\;O_2$ Films: A New Lead-Free System for Electrostatic Supercapacitors with Large Energy Storage Density and Robust Thermal Stability. Adv. Energy Mater., 4 (2014) 1400610.   DOI
31 M. H. Park, T. Schenk, M. Hoffmann, S. Knebel, J. Gartner, T. Mikolajick, U. Schroeder. Effect of acceptor doping on phase transitions of $HfO_2$ thin films for energy-related applications. Nano Energy, 36 (2017) 381-389.   DOI
32 K. D. Kim, Y. H. Lee, T. Gwon, Y.J. Kim, H.J. Kim, T. Moon, S.D. Hyun, H.W. Park, M.H. Park, C.S. Hwang. Scale-up and optimization of $HfO_2-ZrO_2$ solid solution thin films for the electrostatic supercapacitors. Nano Energy, 39 (2017) 390-399.   DOI
33 M. Hoffmann, U. Schroeder, C. Kunneth, A. Kersch, S. Starschich, U. Bottger, T. Mikolajick. Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy, 18 (2015) 154-164.   DOI
34 M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, C. S. Hwang. Review and perspective on ferroelectric $HfO_2$-based thin films for memory applications. MRS Commun. 8 (2018) 795-808.   DOI
35 Mikolajick, Thomas, S. Slesazeck, M. H. Park, U. Schroeder. Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bull. 43 (2018) 340-346.   DOI
36 C. S. Hwang. Prospective of semiconductor memory devices: from memory system to materials. Adv. Electron. Mater. 1 (2015) 1400056.   DOI
37 Y. Wei, P. Nukala, M. Salverda, S. Matzen, H. J. Zhao, J. Momand, A. S. Everhardt, G. Agnus, G. R. Blake, P. Lecoeur, B. J. Kooi. A rhombohedral ferroelectric phase in epitaxially strained $Hf_{0.5}Zr_{0.5}O_2$ thin films. Nat. Mater. 17 (2018) 1095-1100.   DOI
38 Shimizu, Takao, T. Yokouchi, T. Shiraishi, T. Oikawa, PS Krishnan, H. Funakubo. Study on the effect of heat treatment conditions on metalorganic-chemical-vapor-deposi ted ferroelectric $Hf_{0.5}Zr_{0.5}O_2$ thin film on Ir electrode. Jpn. J. Appl. Phys. 53 (2014) 09PA04.   DOI
39 L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, A. Toriumi. Kinetic pathway of the ferroelectric phase formation in doped $HfO_2$ films. Journal of Applied Physics 122 (2017) 124104.   DOI
40 S. Starschich, U. Boettger. An extensive study of the influence of dopants on the ferroelectric properties of $HfO_2$. Journal of Materials Chemistry C 5 (2017) 333-338.   DOI
41 M. H. Park, C. S. Hwang. Fluorite-structure antiferroelectrics, Rep. Prog. Phys. 82 (2019) 124502.   DOI
42 Materlik, R., C. Kunneth, A. Kersch. The origin of ferroelectricity in Hf1-xZrxO2: A computational investigation and a surface energy model. J. Appl. Phys. 117 (2015) 134109.   DOI
43 R. Batra, T. D. Huan, G. A. Rossetti, Jr., and R. Ramprasad, Dopants Promoting Ferroelectricity in Hafnia: Insights from a comprehensive Chemical Space Exploration, Chem. Mater. 29 (21), (2017), 9102-9109.   DOI
44 M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, Thermodynamic and Kinetic Origins of Ferroelectricity in Fluorite Structure Oxides, Adv. Electron. Mater. 5 (3), (2019), 1800522.   DOI
45 M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, S. D. Hyun, T. Mikolajick, U. Schroeder, C. S. Hwang, Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films, Nanoscale 10 (2), (2018), 716-725.   DOI
46 Y. H. Lee, S. D. Hyun, H. J. Kim, J. S. Kim, C. Yoo, T. Moon, K. D. Kim, H. W. Park, Y. B. Lee, B. S. Kim, J. Roh, M. H. Park, C. S. Hwang, Nucleation-Limited Ferroelectric Orthorhombic Phase Formation in $Hf_{0.5}Zr_{0.5}O_2$ Thin Films, Adv. Electron. Mater. 5 (2), (2019), 1800436.   DOI
47 M. H. Park, C. C. Chung, T. Schenk, C. Richter, K. Opsomer, C. Detavernier, C. Adelmann, J. L. Jones, T. Mikolajick, U. Schroeder, Effect of Annealing Ferroelectric $HfO_2$ Thin Films: In Situ, High Temperature X-Ray Diffraction, Adv. Electron. Mater. 4 (7), (2018), 1800091.   DOI
48 M. H. Park, Y. H. Lee, C. S. Hwang, Understanding ferroelectric phase formation in doped HfO2 thin films based on classical nucleation theory, Nanoscale 11 (41), (2019), 19477-19487.   DOI