• Title/Summary/Keyword: Fluoride sensing

Search Result 49, Processing Time 0.019 seconds

Quantum chemical investigations on bis(bora)calix[4]arene: a fluorescent fluoride sensor

  • Jin, Jae Hyeok;Lee, Yoon Sup
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.77-88
    • /
    • 2013
  • The computational study on the fluoride ion binding with bis(bora)calix[4]arene has been performed using density functional theory and ONIOM model. The computed structure and fluorescent behavior of bis(bora)calix[4]arene was corresponded to experiment value. The binding energy for fluoride anion is computed to be 28.05kJ/mol in the chloroform solution. We also predicted that this sensing mechanism is only valid for fluoride ion in halogens. By analyzing molecular orbitals, binding with fluoride ion reduces energy differences between HOMO and LUMO, which leads to fluorescent sensing.

  • PDF

A Carbazole Based Bimodal "Turn-On" Fluorescent Probe for Biothiols (Cysteine/Homocysteine) and Fluoride: Sensing, Imaging and its Applications

  • Kaur, Matinder;Yoon, Byungkwon;Kumar, Rajesh;Cho, Min Ju;Kim, Hak Joong;Kim, Jong Seung;Choi, Dong Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3437-3442
    • /
    • 2014
  • A well-known carbazole-based precursor (probe 1) was used for the detection of cysteine/homocysteine and fluoride. Probe 1 shows a "turn-on" response to cysteine/homocysteine and fluoride via enhancement in emission intensity at 442 nm and 462 nm respectively, in solutions and living cells. Furthermore, probe 1 behaves as a fluorescent molecular switch between cysteine/homocysteine and fluoride as the chemical inputs, which have been used for the development of a combinatorial logic circuit and a molecular keypad lock.

Synthesis of Chemosensor Based on Pyrene and Study for Its Sensing Properties Toward Fluoride Ion

  • Kim, Hyungjoo;Li, Xiaochuan;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.153-158
    • /
    • 2013
  • In this study, pyrene based chemosensor was synthesized by two step reaction. The chemosensor showed that high selectivity toward fluoride in DMSO. The fluorescence intensity was drastically increased by binding between chemosensor and fluoride ion. Absorption and fluorescence spectra were obtained by UV-Vis spectrometer and fluorescence spectrophotometer. The binding ratio between chemosensor and fluoride ion was also investigated by job's plot method and Benesi-Hildebrand plot. The HOMO/LUMO energy levels and electron distribution were calculated and simulated by Material studio 6.0 Package.

A Educational Study on Detection of Fluoride by Borane Compounds (보레인 화합물을 이용한 불소 이온 검출에 관한 교육 연구)

  • Lee, Kang Mun
    • Korean Educational Research Journal
    • /
    • v.37 no.1
    • /
    • pp.33-45
    • /
    • 2016
  • We propose a research for detection of the fluoride ion using borane compounds. Based on the Lewis acid-base reaction, we discussed the fundamental of sensing for fluoride ion. One of the important aspects in the chemistry of organoboranes is their behaviors as Lewis acids, which is a result of the vacant $2p_{\pi}$ orbital on the tricoordinate boron center. The electronic interaction between boron atoms and ${\pi}$-orbitals of donor molecules, constructed from the carbon 2p orbitals, is generally strong. Boron atoms can reach the desired octet configuration either through ${\pi}$-overlap with a suitable X or through formation of Lewis acid-Lewis base complexes.

  • PDF

Synthesis and Optical Properties of Poly(hydroxyphenylbenzoxazole): A Colorimetric and Fluorescent Sensor for Ionic Species

  • Lee, Jin-Koo;Kim, Tae-Hyun;Kim, Young-shin;Gang Li;Park, Won-Ho;Lee, Taek-Seung
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.23-24
    • /
    • 2003
  • We synthesized a poly[2-(2'-hydroxyphenyl) benzoxazole] under the two step procedures of Suzuki coupling polymerization with corresponding monomers followed by the deprotection of benzyl group. The polymer in DMF solution is applicable to colorimetric sensing fluoride anion, which shows a color change from colorless to yellow. High sensitivity to fluoride anion compared to other anions such as phosphate, chloride, and sulfate is ascribed to the high coordination ability of the 2-(2'-hydroxy phenyl)benzoxazole moiety in the polymer chain. Emission shift by metal cations, which can be applied to fluorescent sensing w as also observed in the polymer solution.

  • PDF

Anion Sensing Properties of New Colorimetric Chemosensors Based on Thiourea and Urea Moieties

  • Kim, Dong-Wan;Kim, Jung-Hwan;Hwang, Jae-Young;Park, Jong-Keun;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1159-1164
    • /
    • 2012
  • A new colorimetric sensors containing thiourea (1-(4-nitrophenyl)-3-quinolin-6-ylthiourea; 1) and urea(1-(4-nitrophenyl)-3-quinolin-6-ylurea; 2) moieties for fluoride were designed and synthesized. These simple receptors were characterized their stoichiometry, and investigates the mechanism of their selectivity as anion receptors. The addition of tetrabutylammonium fluoride salts to the solution of receptors caused a dramatically and clearly observable color changes from colorless to yellow. To examine their application as anion receptors by UV-vis and $^1H$ NMR spectroscopy results revealed their higher selectivity for fluoride ion than other anions. The receptors and fluoride ion formed a 1:1 stoichiometry complex through strong hydrogen bonding interactions in the first step, followed by a process of deprotonation in presence of an excess of $F^-$ in DMSO solvent.

Anthraquinone and Indole based Chemosensor for Fluoride Anions Detection

  • Son, Young-A;Kim, Sung-Hoon
    • Textile Coloration and Finishing
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • We have designed and synthesized the colorimetric chemosensor through the reactions of 1,2-anthraquinone and indol-3-carboxaldehyde. Due to its well conjugated D-${\pi}$-A system and the existence of NH-fragment in indole moiety, we expected that the chemosensor can detect target anions with NH-fragment in indole part of the structure. In this regard, UV-Vis absorption spectra were measured to investigate sensing properties of the probe toward different anions in DMSO. This chemosensor shows to detect fluoride anions with absorption change in intensity. These properties are mainly related to the deprotonation effect. ICT system in this molecule was also observed by the computational approach using Material Studio 4.3 package.

Piezoelectric nanocomposite sensors assembled using zinc oxide nanoparticles and poly(vinylidene fluoride)

  • Dodds, John S.;Meyers, Frederick N.;Loh, Kenneth J.
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.55-71
    • /
    • 2013
  • Structural health monitoring (SHM) is vital for detecting the onset of damage and for preventing catastrophic failure of civil infrastructure systems. In particular, piezoelectric transducers have the ability to excite and actively interrogate structures (e.g., using surface waves) while measuring their response for sensing and damage detection. In fact, piezoelectric transducers such as lead zirconate titanate (PZT) and poly(vinylidene fluoride) (PVDF) have been used for various laboratory/field tests and possess significant advantages as compared to visual inspection and vibration-based methods, to name a few. However, PZTs are inherently brittle, and PVDF films do not possess high piezoelectricity, thereby limiting each of these devices to certain specific applications. The objective of this study is to design, characterize, and validate piezoelectric nanocomposites consisting of zinc oxide (ZnO) nanoparticles assembled in a PVDF copolymer matrix for sensing and SHM applications. These films provide greater mechanical flexibility as compared to PZTs, yet possess enhanced piezoelectricity as compared to pristine PVDF copolymers. This study started with spin coating dispersed ZnO- and PVDF-TrFE-based solutions to fabricate the piezoelectric nanocomposites. The concentration of ZnO nanoparticles was varied from 0 to 20 wt.% (in 5 % increments) to determine their influence on bulk film piezoelectricity. Second, their electric polarization responses were obtained for quantifying thin film remnant polarization, which is directly correlated to piezoelectricity. Based on these results, the films were poled (at 50 $MV-m^{-1}$) to permanently align their electrical domains and to enhance their bulk film piezoelectricity. Then, a series of hammer impact tests were conducted, and the voltage generated by poled ZnO-based thin films was compared to commercially poled PVDF copolymer thin films. The hammer impact tests showed comparable results between the prototype and commercial samples, and increasing ZnO content provided enhanced piezoelectric performance. Lastly, the films were further validated for sensing using different energy levels of hammer impact, different distances between the impact locations and the film electrodes, and cantilever free vibration testing for dynamic strain sensing.