Browse > Article
http://dx.doi.org/10.5764/TCF.2013.25.3.153

Synthesis of Chemosensor Based on Pyrene and Study for Its Sensing Properties Toward Fluoride Ion  

Kim, Hyungjoo (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Li, Xiaochuan (College of Chemistry and Chemical Engineering, Henan Normal University)
Son, Young-A (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Publication Information
Textile Coloration and Finishing / v.25, no.3, 2013 , pp. 153-158 More about this Journal
Abstract
In this study, pyrene based chemosensor was synthesized by two step reaction. The chemosensor showed that high selectivity toward fluoride in DMSO. The fluorescence intensity was drastically increased by binding between chemosensor and fluoride ion. Absorption and fluorescence spectra were obtained by UV-Vis spectrometer and fluorescence spectrophotometer. The binding ratio between chemosensor and fluoride ion was also investigated by job's plot method and Benesi-Hildebrand plot. The HOMO/LUMO energy levels and electron distribution were calculated and simulated by Material studio 6.0 Package.
Keywords
pyrene; chemosensor; fluoride; fluorescence; DMSO;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Formica, V. Fusi, L. Giorgi, and M. Micheloni, New Fluorescent Chemosensor for Metal Ions in Solution, Coord. Chem. Rev., 256(1-2), 170(2012).   DOI   ScienceOn
2 S. P. Wu, K. J. Du, and Y. M. Sung, Colorimetric Sensing of Cu(II): Cu(II) Induced Deprotonation of An Amide Responsible for Color Changes, Dalton Trans., 39(18), 4363(2010).   DOI   ScienceOn
3 J. S. Bae, S. Y. Gwon, and S. H. Kim, Anthraquinone-Carbamodithiolate Assembly as Selective Chromogenic Chemosensor for $Fe^{3+}$, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 25(1), 13(2013).   과학기술학회마을   DOI   ScienceOn
4 X. Peng, J. Du, J. Wang, Y. Wu, J. Zhao, S. Sun, and T. Xu, A Selective Fluorescent Sensor for Imaging $Cd^{2+}$ in Living Cells, J. Am. Chem. Soc., 129(6), 1500(2007).   DOI   ScienceOn
5 H. S. Jung, P. S. Kwon, J. W. Lee, J. I. Kim, C. S. Hong, J. W. Kim, S. H. Yan, J. Y. Lee, J. H. Lee, T. Joo, and J. S. Kim, Coumarin-Derived $Cu^{2+}$-Selective Fluorescence Sensor: Synthesis, Mechanisms, and Applications in Living Cells, J. Am. Chem. Soc., 131(5), 2008(2009).   DOI   ScienceOn
6 H. Kim and Y. Son, Synthesis and Optical Properties of Novel Chemosensor Based on Rhodamine 6G, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 24(4), 233(2012).   과학기술학회마을   DOI   ScienceOn
7 X. Chen, Z. Li, and A. Tong, Salicylaldehyde Fluorescein Hydrazone : A Colorimetric Logic Chemosensor for pH and Cu(II), Thetrahedron Lett., 49(32), 4697(2008).   DOI   ScienceOn
8 Z. Dong, Y. Guo, X. Tian, and J. Ma, Quinoline Group Based Fluorescent Sensor for Detecting Zinc Ions in Aqueous Media and Its Logic Gate Behaviour, J. Lumin., 134(2), 635(2013).   DOI   ScienceOn
9 Y. Niko, S. Kawauchi, and G. Konish, Synthesis, Luminescence Properties and Theoretical Insights of N-Alkyl-or N,N-Dialkyl-Pyrene-1-Carboxamide, Tetrahedron Lett., 52(38), 4843(2011).   DOI   ScienceOn
10 T. M. F. Durate and K. Mullen, Pyrene-Based Materials for Organic Electronics, Chem. Rev., 111(11), 7260(2011).   DOI   ScienceOn
11 L. Zang, D. Wei, S. Wang, and S. Jiang, A Phenolic Schiff Base for Highly Selective Sensing of Fluoride and Cyanide Via Different Channels, Tetrahedron, 68, 636(2012).   DOI   ScienceOn
12 H. A. Benesi and J. H. Hildebrand, A Spectro-ophotometric Investigation of The Binding of Iodine With Aromatic Hydrocarbons, J. Am. Chem. Soc., 71(8), 2703(1949).   DOI   ScienceOn
13 G. Weber and F. W. J. Teale, Determination of The Absolute Quantum Yield of Fluorescent Solutions, Trans. Faraday Soc., 53, 646(1957).   DOI
14 P. MacCarthy, Simplified Experimental Route for Obtaining Job's Curves, Anal. Chem., 50(14), 2165 (1978).   DOI
15 F. S. Raad, A. O. E. Ballouli, R. M. Moustafa, M. H. A. Sayah, and B. R. Kaafarani, Novel Quinocalinophenathrophenazine-Based Molecules as Sensors for Anions: Synthesis and Binding Investigations, Tetrahedron, 66(16), 2944(2010).   DOI   ScienceOn
16 S. P. Wu, T. H. Wang, and S. R. Liu, A Highly Selective Turn-On Fluorescent Chemosensor For Copper(II) Ion, Tetrahedron, 66(51), 9655(2010).   DOI   ScienceOn
17 P. A. Gale, Anion and Ion-Pair Receptor Chemistry, Highlights From 2000 and 2001, Coord. Chem. Rev., 240(1-2), 191(2003).   DOI   ScienceOn
18 M. Biocchi, L. D. Boca, D. E. Gomez, L. Fabbrizzi, M. Licchelli, and E. Mozani, Nature of Urea-Fluoride Binding: Incipient and Definitive Proton Transfer, J. Am. Chem. Soc., 126(50), 16507(2004).   DOI   ScienceOn
19 S. M. S. Chauhan, T. Bisht, and B. Garg, Anion Sensing by Phenazine-Based Urea/Thiourea Receptors, Tetrahedron Lett., 49(47), 6646(2008).   DOI   ScienceOn
20 S. Devaraj, D. Saravanakumar, and M. Kandaswamy, Dual Responsive Chemosensors for Anion and Cation: Synthesis and Studies of Selective Chemosensor for $F^-$ and Cu(II) Ions, Sens. Act. B: Chem., 136(1-2), 13(2009).   DOI   ScienceOn
21 D. H. Lee, H. Y. Lee, and J. I. Hong, Anion Sensor Based on The Indoaniline-Thiourea System, Tetrahedron Lett., 43(40), 7273(2002).   DOI   ScienceOn