• 제목/요약/키워드: Fluorescence intensity

검색결과 579건 처리시간 0.022초

Interaction between Norfolxacin and Single Stranded DNA

  • 여정아;조태섭;Kim, Seog K.;문형랑;준길자;남원우
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권4호
    • /
    • pp.449-457
    • /
    • 1998
  • We compared various spectroscopic properties of a norfloxacin-single stranded DNA complex with those of norfloxacin-double stranded DNA complex. Norfloxacin binds to both double-and single stranded DNA, and we observed the following spectroscopic changes for both complexes: hypochromism in the norfloxacin absorption region in the absorption spectrum, the characteristic induced CD spectrum consisting of a weak positive band at 323 nm and a strong positive band at 280-300 nm followed by a negative band in the 260 nm region, a strong decrease in the fluorescence intensity and a red-shift in the fluorescence emission spectrum, and shorter fluorescence decay times. These results indicate that the environments of the bound norfloxacin in both DNAs are similar, although the equilibrium constant of the norfloxacin-single stranded DNA was twice as high as the norfloxacin-double stranded DNA complex. Both complexes were thermodynamically favored with similar negative Δ$G^o$. Negative Δ$H^o$ terms contribute to these spontaneous reactions; Δ$S^o$ term was unfavorable.

Photophysical Properties of Khellin-Dimethylfumarate C$_4$-Cyclomonoadduct

  • Shim, Sang-Chul;Kang, Ho-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권6호
    • /
    • pp.458-461
    • /
    • 1986
  • The fluorescence intensity of khellin-dimethylfumarate C$_4$-cycloadduct (KDF) is very sensitive to temperature and to the nature of solvents, especially hydrogen-bonding ability. The fluorescence quantum yields of KDF in ethanol and isopentane at 77K are 0.73 and 0.54, respectively, both of which are much larger than the room temperature values. The phosphorescence lifetime is very long and decreases with decreasing the solvent polarity. The phosphorescence and fluorescence quantum yield ratio is very small and decreases with decreasing solvent polarity. The solvent relaxation plays an important role in the excited states of KDF. The internal conversion is a major decay process of the excited singlet state of KDF in all the solvents used at room temperature.

Nitric Oxide Detection of Fe(DTC)3-hybrizided CdSe Quantum Dots Via Fluorescence Energy Transfer

  • Chang-Yeoul, Kim
    • 한국분말재료학회지
    • /
    • 제29권6호
    • /
    • pp.453-458
    • /
    • 2022
  • We successfully synthesize water-dispersible CTAB-capped CdSe@ZnS quantum dots with the crystal size of the CdSe quantum dots controlled from green to orange colors. The quenching effect of Fe(DTC)3 is very efficient to turn off the emission light of quantum dots at four molar ratios of the CdSe quantum dots, that is, the effective covering the surface of quantum dots with Fe(DTC)3. However, the reaction with Fe(DTC)3 for more than 24 h is required to completely realize the quenching effect. The highly quenched quantum dots efficiently detect nitric oxide at nano-molar concentration of 110nM of NO with 34% of recovery of emission light intensity. We suggest that Fe(DTC)3-hybridized CdSe@ZnS quantum dots are an excellent fluorescence resonance energy transfer probe for the detection of nitric oxide in biological systems.

Synthesis of a squaric acid-derived molecular probe for near-infrared fluorescence and photoacoustic imaging

  • Jung Eun Park;Yong Dae Park;Jongho Jeon
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.177-181
    • /
    • 2020
  • Dual-modality imaging strategy using near-infrared fluorescence (FLI) and photoacoustic imaging (PAI) demands a suitable probe to enable dual-modular signal production. Herein, we demonstrate a synthetic protocol of small molecular dye for dual-modular FLI and PAI. A condensation reaction between squaric acid and carboxypentyl benzoindolium, and followed by basic hydrolysis to give the benzoindole derived squaraine (BSQ) dye in 49% yield. Next, the carboxylic acid group of BSQ was further functionalized with N-hydroxysuccinimide or azide group for an efficient conjugation with a targeting biomolecule. BSQ showed a maximum fluorescent emission at around 680 nm and the photoacoustic signal reached a maximum intensity at 680-700 nm. Based on these results, we conclude that BSQ analogs will be useful probes for dual-modular (FLI/PAI) imaging studies in animal models.

Methods of measuring presynaptic function with fluorescence probes

  • Yeseul Jang;Sung Rae Kim;Sung Hoon Lee
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.2.1-2.7
    • /
    • 2021
  • Synaptic vesicles, which are endogenous to neurotransmitters, are involved in exocytosis by active potentials and release neurotransmitters. Synaptic vesicles used in neurotransmitter release are reused via endocytosis to maintain a pool of synaptic vesicles. Synaptic vesicles show different types of exo- and endocytosis depending on animal species, type of nerve cell, and electrical activity. To accurately understand the dynamics of synaptic vesicles, direct observation of synaptic vesicles is required; however, it was difficult to observe synaptic vesicles of size 40-50 nm in living neurons. The exo-and endocytosis of synaptic vesicles was confirmed by labeling the vesicles with a fluorescent agent and measuring the changes in fluorescence intensity. To date, various methods of labeling synaptic vesicles have been proposed, and each method has its own characteristics, strength, and drawbacks. In this study, we introduce methods that can measure presynaptic activity and describe the characteristics of each technique.

Haematococcus pluvialis Cell-Mass Sensing Using Ultraviolet Fluorescence Spectroscopy

  • Lababpour, Abdolmajid;Hong, Seong-Joo;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권12호
    • /
    • pp.1922-1929
    • /
    • 2007
  • A simple whole-cell-based sensing system is proposed for determining the cell mass of H. pluvialis using ultraviolet fluorescence spectroscopy. An emission signal at 368 nm was used to detect the various kinds of green, green-brown, brown-red, and red H. pluvialis cells. The fluorescence emission intensities of the cells were highest at 368 nm with an excitation wavelength of 227 nm. An excitation wavelength of 227 nm was then selected for cell-mass sensing, as the emission fluorescence intensities of the cell suspensions were highest at this wavelength after subtracting the background interference. The emission fluorescence intensities of HPLC-grade water, filtered water, and HPLC-grade water containing a modified Bold's basal medium (MBBM) were measured and the difference was less than 1.6 for the selected wavelengths. Moreover, there was no difference in the emission intensity at 368 nm among suspensions of the various morphological states of the cells. A calibration curve of the fluorescence emission intensities. and cell mass was obtained with a high correlation ($R^2=0.9938$) for the various morphological forms of H. pluvialis. Accordingly, the proposed method showed no significant dependency on the various morphological cell forms, making it applicable for cell-mass measurement. A high correlation was found between the fluorescence emission intensities and the dry cell weight with a mixture of green, green-brown, brown-red, and red cells. In conclusion, the proposed model can be directly used for cell-mass sensing without any pretreatment and has potential use as a noninvasive method for the online determination of algal biomass.

유전자 재조합 대장균에 의만 5-Aminolevulinic Acid (ALA)의 생산 및 공정 모니터링 II. 2차원 형광센서에 의안 공정 모니터링 (Production and Process Monitoring of 5-Aminolevulinic Acid (ALA) by Recombinant E. coli II. process Monitoring by a 2-Dimensional Fluorescence Sensor)

  • 이종일;정상윤;임용식;정상욱
    • KSBB Journal
    • /
    • 제19권1호
    • /
    • pp.27-32
    • /
    • 2004
  • 본 연구에서는 2차원 형광 센서를 이용하여 ALA 생산 공정을 실시간 모니터링하고 오프라인 분석 데이터와 비교, 고찰하였다. 배양액의 pH나 균체의 성장 특성 등 생물공정내의 환경 변화에 따라 형광 특성에 차이를 보였으며 최소배지인 MS8 배지에 IPTG, LA 및 기질 (포도당, 숙신산) 등을 첨가한 후 형광 특성의 변화를 살펴본 결과 균체의 성장이나 세포내 대사현상의 변화를 형광 차이로부터 확인할 수 있었다 2차원 형광센서에 의해 실시간 모니터링 된 형광 스펙트럼데이터는 기질 및 생산물 그리고 세포내 효소 활성 등의 각종 공정 변수와 좋은 상관성을 보였다. 따라서 본 연구에서 사용한 2차원 형광센서는 ALA 대량 생산을 위해 주요한 공정변수를 실시간 모니터링 하는데 매우 효과적이라 할 수 있으며 향후 공정의 제어 및 최적화에도 이용될 수 있다.

Light dependent arsenic uptake and growth in Lactuca sativa L.

  • Hyun-Gi Min;Eunjee Kim;Min-Suk Kim;Jeong-Gyu Kim
    • 환경생물
    • /
    • 제41권4호
    • /
    • pp.697-705
    • /
    • 2023
  • Along with other heavy metals, arsenic (As) is one among the substances most harmful to living organisms including humans. Owing to its morphological similarity to phosphorus, the uptake of As is influenced by photosynthesis and the phosphorus uptake pathway. In this study, we varied arsenic exposure and light intensity during nutrient solution cultivation of lettuce (Lactuca sativa L.) to determine the effect of these two factors on arsenic uptake, lettuce growth, and electron transfer in photosystem II. In the treatment exposed to 30 μmol L-1 of arsenic, the shoot arsenic concentration increased from 4.73 mg kg-1 to 18.97 mg kg-1 as the light intensity increased from 22 to 122 μmol m-2 s-1. The water content and ET2o/RC of the shoots were not affected by arsenic at low light intensity; however, at optimal light intensity, they decreased progressively with arsenic exposure. Increased light intensity stimulated the growth of plant roots and shoots; contrarily, the difference in growth decreased as the concentration of As exposure increased. The results of this study suggest that the effect of As on plant growth is dependent on light intensity; in particular, an increase in light intensity can increase the uptake of As, thereby affecting plant growth and As toxicity.

405 nm 광원을 이용한 생물입자탐지기의 에어로졸 분석성능 (The performance of Bio-aerosol Detection System (BDS) with 405 nm laser diode)

  • 정영수;정유진;이종민;최기봉
    • 한국입자에어로졸학회지
    • /
    • 제13권1호
    • /
    • pp.25-31
    • /
    • 2017
  • This paper offer the characteristics for the detection and classification of biological and non-biological aerosol particles in the air by using laser-induced-fluorescence (LIF) based Bio-aerosol Detection System (BDS). The BDS is mainly consist of an optical chamber, in-outlet nozzle system, 405 nm diode laser, an avalanche photo detector (APD) for scattering signal and photomultiplier tubes (PMT) for fluorescence signals in two different wavelength range ; F1, 510-600 nm and F2, 435-470 nm. The detection characteristics, especially ratio of fluorescence signal intensity were examined using well-known components : polystylene latex (PSL), fluorescence PSL, $2{\mu}m$ of SiO2 micro sphere, dried yeast, NADH, ovalbumin, fungicide powder and standard dust. The results indicated that the 405 nm diode laser-based LIF instrument can be a useful bio-aerosol detection system for unexpected biological threaten alter in real-time to apply for dual-use technology in military and civilian fields.

엔진 유동장에서 분사시기에 따른 혼합기의 기ㆍ액상 농도 분포에 관한 연구 (Concentration Distribution of Liquid/vapor Phases under In-Cylinder Flow Field with Different Injection Timings)

  • 김한재;최동석;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.96-104
    • /
    • 2001
  • The present study experimentally investigates the concentration distribution of liquid and vapor phase with different injection timings in the in-cylinder flow field of a optically accessible engine. The conventional MPI, DOHC engine was modified into DI gasoline engine. The images of liquid and vapor phases in the motoring engine were captured by using exciplex fluorescence method. Dopants used in this study were 2% fluorobenzene and 9% DEMA(diethyl-methyl-amino) in 89% solution of hexane by volume respectively. Two dimensional spray fluorescence images of liquid and vapor phases were acquired to analyze spray behaviors and fuel distribution in the in-cylinder flow field. Measurements were carried out fur four different injection timings, namely BTDC 270$^{\circ}$, 180$^{\circ}$, 90$^{\circ}$, and 50$^{\circ}$. Experimental results indicate that behaviors and distribution of vapor phase were largely affected by in-cylinder tumble flow, and mixture formation process was also greatly affected by in-cylinder flow at early injection mode and by ambient pressure at late injection mode.

  • PDF