• 제목/요약/키워드: Fluorescence dye

검색결과 215건 처리시간 0.025초

레이저 형광여기법(LIF)를 이용한 복잡 난류유동장의 혼합특성에 관한 연구 (A Study on the Mixing Characteristics in Complex Turbulent Flow by a Laser Induced Fluorescence Method)

  • 김경천;정은호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.542-547
    • /
    • 2001
  • A non-intrusive Planar Laser-Induced Fluorescence(PLIF) technique was applied to study the turbulent mixing process in a Rushton turbine reactor. Instantaneous and ensemble averaged concentration fields are obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by a thin Nd:Yag laser sheet illuminating the whole center plane of the stirred tank. The gray level images captured by a 14-bit cooled CCD camera can be transformed to the local concentration values using a calibration matrix. The dye injection point was selected at the tank wall with three quarter height (3/4H) from the tank bottom to observe the mixing characteristics in upper bulk flow region. There exist distinct two time scales: the rapid decay of mean concentration in each region after the dye infusion reflects the large scale mixing while the followed slow decay reveals the small scale mixing. The temporal change of concentration probability functions conjectures the two sequential processes in the batch type mixing. An inactive column of water existed above the impeller disk, in which the fluid rotates with the shaft but is isolated from the mean bulk flow.

  • PDF

레이저 형광여기법(LIF)를 이용한 러쉬톤 터빈 교반기의 혼합특성에 관한 연구 (A Study on the Mixing Characteristics in a Rushton Turbine Reactor by a Laser Induced Fluorescence Method)

  • 정은호;김경천
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1145-1152
    • /
    • 2002
  • A non-intrusive Planar Laser-Induced Fluorescence(PLIF) technique was applied to study the turbulent mixing process in a Rushton turbine reactor. Instantaneous and ensemble averaged concentration fields was obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by a thin Nd:Yag laser sheet illuminating the whole center plane of the stirred tank. The gray level images captured by a 14-bit cooled CCD camera could be transformed to the local concentration values using a calibration matrix. The dye injection point was selected at the tank wall with three quarter. height (3/4H) from the tank bottom to observe the mixing characteristics in upper bulk flow region. There exist distinct two time scales: the rapid decay of mean concentration after the dye infusion reflects the large scale turbulent mixing while the fellowed slow decay reveals the small scale molecular mixing. The temporal change of concentration variance field conjectures the two sequential processes for the batch type mixing. An inactive column of water is existed above the impeller disk, in which the fluid rotates with the shaft but is isolated from the mean bulk flow.

A Fluorescence-based cDNA-AFLP Method for Identification of Differentially Expressed Genes

  • Park, Sook-Young;Jwa, Nam-Soo;Chi, Myoung-Hwan;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • 제25권2호
    • /
    • pp.184-188
    • /
    • 2009
  • Identification of differently expressed genes under specific tissues and/or environments provides insights into the nature and underlying mechanisms of cellular processes. Although cDNA-AFLP (Amplified Fragment Length Polymorphism) is a powerful method for analyzing differentially expressed genes, its use has been limited to the requirement of radioactive isotope use and the difficulty of isolating the bands of interest from a gel. Here, we describe a modified method for cDNA-AFLP that uses a fluorescence dye for detection and isolation of bands directly from a small size polyacrylamide gel. This method involves three steps: (i) preparation of cDNA templates, (ii) PCR amplification and differential display, and (iii) identification of differentially expressed genes. To demonstrate its utility and efficiency, differentially expressed genes during vegetative growth and appressorial development of Magnaporthe oryzae were analyzed. This method could be applied to compare gene expression profiles in a diverse array of organisms.

Study of Optimal Conditions Affecting the Photothermal Effect and Fluorescence Characteristics of Indocyanine Green

  • Seo, Sung Hoon;Bae, Min Gyu;Park, Hyeong Ju;Ahn, Jae Sung;Lee, Joong Wook
    • Current Optics and Photonics
    • /
    • 제5권5호
    • /
    • pp.554-561
    • /
    • 2021
  • Indocyanine green (ICG) is a cyanine dye that has been used in medical diagnostics based on fluorescence imaging, and in medical therapy based on the photothermal effect. It is important to systematically understand the photothermal effect and fluorescence characteristics of ICG simultaneously. By varying a number of conditions such as laser power density, laser irradiation wavelength, concentration of ICG solution, and exposure time of laser irradiation, the intensity properties of fluorescence and the temperature change induced by the photothermal effect are measured simultaneously using a charge-coupled-device camera and a thermal-imaging camera. The optimal conditions for maximizing the photothermal effect are determined, while maintaining a relatively long lifetime and high efficiency of the fluorescence for fluorescence imaging. When the concentration of ICG is approximately 50 ㎍/ml and the laser power density exceeds 1.5 W/cm2, the fluorescence lifetime is the longest and the temperature induced by the photothermal effect rapidly increases, exceeding the critical temperature sufficient to damage human cells and tissues. The findings provide useful insight into the realization of effective photothermal therapy, while also specifying the site to be treated and enabling real-time treatment monitoring.

Study of Anisotropic Photoluminescence and Energy Transfer in Oriented Dye-incorporating Zeolite-L Monolayer

  • Lee, Jin-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2190-2194
    • /
    • 2010
  • Development of the methods to organize zeolite microcrystals into closely packed and uniformly aligned monolayers on various substrates have been pursued viewing microparticles as a novel class of building blocks. We now report that the vertically aligned zeolite monolayer can be applied as novel supramolecularly organized systems for anisotropic photoluminescence in high dichroic ratio, to study energy transfer dynamics between the internal and external fluorophores, and to develop zeolite-based advanced materials. Study of polarized fluorescence spectroscopy and angle-dependent intensity change with dye molecules in different surroundings further provides insight into molecular interactions that can be used for the future design of optoelectronic device in nanometer size. In addition, this report shows that isolating of organic dye through surface treatment is crucial for preventing the egress of the incorporated dye molecules from the channels of zeolite to the solution and to enhance the anisotropic luminescence.

레이저 진단을 이용한 확산화염에서의 매연 및 PAH 의 측정기법 (Measurement of Soot and PAH in the Diffusion Flame Using Laser Diagnostics)

  • 윤승석;이상민;정석호
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.108-111
    • /
    • 2004
  • Laser induced incandescence and laser induced fluorescence techniques have been investigated to measure the concentrations of soot and PAH, respectively. The Nd:YAG and dye lasers were used to form a sheet beam, and its wavelength were modulated to obtain a optimized signals of soot and PAH. Results showed that the relative size groups of soot and PAH can be measured by using our laser techniques.

  • PDF

LIF Conforcal Microscope을 이용한 Y-channel 마이크로믹서의 최적설계 연구 (The Study of Optimum Design of Y-Channel Micro-Mixer by Using LIF Conforcal Microscope)

  • 김상우;현석호;신태석;이도형
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.311-317
    • /
    • 2009
  • Due to extremely small device size and velocity scale, mixing in microchannel take place very slowly by way of molecular diffusion transport. Mixing enhancement becomes a central issue in microfluidics for biomedical and chemical applications. In this work, The optimization results and validation through experiment and fabrication. In this efficient micromixer design, it is essential to evaluate mixing efficiency with good precision. Mixing efficiency for Y-channel micromixer is measured by fluorescence intensity using LIF(Laser Induced Fluorescence) Confocal Microscope. The Y-channel micromixers are fabricated with polydimethylsiloxane(PDMS). Nile Blue A is injected into the micromixer as a fluorescence dye for measuring of fluorescence intensity by He/Ne laser. Throughout the experiments and computer simulation, accurate mixing efficiency evaluation process for a PDMS Y-channel micromixer is established.

The Distance-Dependent Fluorescence Enhancement Phenomena in Uniform Size Ag@SiO2@SiO2(dye) Nanocomposites

  • Arifin, Eric;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.539-544
    • /
    • 2013
  • $Ag@SiO_2@SiO_2$(FITC) nanocomposites were prepared by the simple polyol process and St$\ddot{o}$ber method. Fluorescence enhancement of fluorescein moiety (fluorescein isothiocyanate, FITC) was investigated in the presence of silver nanoparticles in $Ag@SiO_2@SiO_2$(FITC) system with varying thickness (X nm) of first silica shell. Maximum enhancement factor of 4.3 fold was achieved in $Ag@SiO_2@SiO_2$(FITC) structure with the first silica shell thickness of 8 nm and the average separation distance of 11 nm between the surface of silver nanoparticle and fluorescein moiety. The enhancement is believed to be originated from increased excitation rate of fluorescein moiety due to concentrated local electromagnetic field which was improved by interaction of light with silver nanoparticles.

A FRET Assay for Celiac Disease

  • Lee, Sae A;Cho, Chul Min;Jang, Il Ho;Kang, Jung Sook
    • 대한의생명과학회지
    • /
    • 제22권4호
    • /
    • pp.160-166
    • /
    • 2016
  • To provide a basis for a homogeneous fluorescence resonance energy transfer (FRET) immunoassay for celiac disease, we carried out a FRET experiment using guinea pig tissue transglutaminase (tTG) and antibodies to tTG (anti-tTG) purified from rat serum. Fluorescein was utilized as the probe, and a nonfluorescent dye, QSY 7 served as the quencher. We labeled anti-tTG and tTG with fluorescein isothiocyanate and QSY 7 succinimidyl ester, respectively. Fluorescein-labeled anti-tTG was the donor, and QSY 7-labeled tTG was the acceptor of the FRET experiment. When we titrated fluorescein-labeled anti-tTG with QSY 7-labeled tTG, we observed a large decrease in the steady-state fluorescence intensity, which was due to strong FRET from fluorescein-labeled anti-tTG to QSY 7-labeled tTG. Using time-resolved fluorescence spectroscopy, we could also observe a decrease in the fluorescence lifetime, which confirms the steady-state data. We expect that these results might be useful in the development of a novel fluorescence immunoassay for an easy screening and follow-up of celiac patients.