• Title/Summary/Keyword: Fluid-surface Model

Search Result 687, Processing Time 0.029 seconds

A model of roof-top surface pressures produced by conical vortices : Evaluation and implications

  • Banks, D.;Meroney, R.N.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.279-298
    • /
    • 2001
  • The greatest suction on the cladding of flat roof low-rise buildings is known to occur beneath the conical vortices that form along the roof edges for cornering winds. In a companion paper, a model of the vortex flow mechanism has been developed which can be used to connect the surface pressure beneath the vortex to adjacent flow conditions. The flow model is experimentally validated in this paper using simultaneous velocity and surface pressure measurement on a 1 : 50 model of the Texas Tech University experimental building in a wind tunnel simulated atmospheric boundary layer. Flow visualization gives further insight into the nature of peak suction events. The flow model is shown to account for the increase in suction towards the roof corner as well as the presence of the highest suction at wind angles of $60^{\circ}$. It includes a parameter describing vortex suction strength, which is shown to be related to the nature of the reattachment, and also suggests how different components of upstream turbulence could influence the surface pressure.

Three dimensional numerical simulations for non-breaking solitary wave interacting with a group of slender vertical cylinders

  • Mo, Weihua;Liu, Philip L.F.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.20-28
    • /
    • 2009
  • In thus paper we validate a numerical model for wave-structure interaction by comparing numerical results with laboratory data. The numerical model is based on the Navier-Stokes (N-S) equations for an incompressible fluid. The N-S equations are solved by a two-step projection finite volume scheme and the free surface displacements are tracked by the volume of fluid (VOF) method The numerical model is used to simulate solitary waves and their interaction with a group of slender vertical piles. Numerical results are compared with the laboratory data and very good agreement is observed for the time history of free surface displacement, fluid particle velocity and wave force. The agreement for dynamic pressure on the cylinder is less satisfactory, which is primarily caused by instrument errors.

Analysis of Time-Dependent Behavior of Plasma Sheath using Ion Fluid Model (이온유체방정식을 이용한 Plasma Sheath 시변 해석)

  • Lee, Ho-Jun;Lee, Hae-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2173-2178
    • /
    • 2007
  • Dynamics of plasma sheath was analyzed using simple ion fluid model with poison equation. Incident ion current, energy, potential distribution and space charge density profile were calculated as a function of time. The effects of initial floating sheath on the evolution of biased sheath were compared with ideal matrix sheath. The effects of finite rising time of pulse bias voltage on the ion current and energy was studied. The influence of surface charging on the evolution of sheath was also investigated

A VOLUME OF FLUID METHOD FOR FREE SURFACE FLOWS AROUND SHIP HULLS (선체주위 자유수면 유동 해석을 위한 VOF법 연구)

  • Park, I.R.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.57-64
    • /
    • 2015
  • This paper describes a volume of fluid(VOF) method, mRHRIC for the simulation of free surface flows around ship hulls and provides its validation against benchmark test cases. The VOF method is developed on the basis of RHRIC method developed by Park et al. that uses high resolution differencing schemes to algebraically preserve both the sharpness of interface and the boundedness of volume fraction. A finite volume method is used to solve the governing equations, while the realizable ${\kappa}-{\varepsilon}$ model is used for turbulence closure. The present numerical results of the resistance performance tests for DTMB5415 and KCS hull forms show a good agreement with available experimental data and those of other free surface methods.

Numerical Simulation of Bubble-Free Surface Interaction (기포-자유표면 상호작용에 대한 수치적 고찰)

  • Yang Chan-Kyu;Kim Hyeon-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.48-57
    • /
    • 1999
  • This paper deals with the numerical simulation of the behavior of single bubble rising near the free surface. Volume fraction of fluid (VOF) method with continuum surface force (CSF) model, the well known method for two phase flow simulation is adopted. A bubble of spherical shape positioned beneath the free surface is assumed at the initial stage. The difference according to the fluid properties of surrounding medium is examined. Simulation results are depicted and explained with the time history of bubble shape, velocity field and vorticity distribution.

  • PDF

A study of high-power density laser welding process considering surface tension and recoil pressure (표면장력과 후압을 고려한 고에너지밀도 레이저 용접공정 해석)

  • Ha, Eung-Ji;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1190-1195
    • /
    • 2004
  • In this study, numerical investigation has been performed on the evolution of key-hole geometry during high-energy density laser welding process. Unsteady phase-change heat transfer and fluid flow with the surface tension and recoil pressure are simulated. To model the overheated surface temperature and recoil pressure considering subsonic/sonic vapor flow, the one-dimensional vaporization models proposed by Ganesh and Knight are coupled over liquid-vapor interface. It is shown that the present model predicts well both the vaporization physics and the fluid flow in the thin liquid layer over the other model.

  • PDF

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

Study of Cam and Follower Contacts with the Mixed Concepts of EHL and Boundary Lubrication (EHL과 경계 윤활의 혼합 개념에 의한 캠과 종동물의 접촉 현상에 대한 연구)

  • 장시열
    • Tribology and Lubricants
    • /
    • v.15 no.4
    • /
    • pp.343-353
    • /
    • 1999
  • The role of viscosity index improver's(Ⅶ) additives for modem engine lubrication is complex. Under the condition of atmosphere or low shear rate, the characteristics of Ⅶ added lubricant is verified and quoted frequently for mathematical model of lubricant behavior. However, recent research shows that added lubricant has the characteristics of shear thinning at high shear rate condition although it performs well enough over the whole range of working temperature. At high shear rate, they show significant decrease of apparent viscosity irrespective of temperature. Many experimental researches verify that Ⅶ added lubricant shows boundary film layer formation on the solid surface as well as shear thinning effect by its polymeric molecular characteristics. The intend of our research is to verify the effects of Ⅶ from the viewpoint of continuum mechanics, because conventional Reynolds'equation with only pressure-viscosity relation cannot fully predict the lubricant behavior under the Ⅶ added condition. In these aspects, Reynolds'equation of Newtonian fluid model lacks the reflection of real fluid behavior and there is no way to explain the non-linear characteristics of Ⅶ added lubricant. In this research, we mathematically modeled the Ⅶ added lubricant behaviors which are the characteristics of non-Newtonian fluid behavior at high shear rate and boundary film formation on the solid surface. The consideration of elastic deformation in the contact region is also included in our computation and finally the converged film pressure and the film thickness with elastic deformation are obtained. The results are compared with those of Newtonian fluid model.

Numerical Study for Experiment on Wave Pattern of Internal Wave and Surface Wave in Stratified Fluid (성층화된 유체 내에서 내부파와 표면파의 파형 변화 실험을 위한 수치적 연구)

  • Lee, Ju-Han;Kim, Kwan-Woo;Paik, Kwang-Jun;Koo, Won-Cheol;Kim, Yeong-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.236-244
    • /
    • 2019
  • Internal waves occur at the interface between two layers caused by a seawater density difference. The internal waves generated by a body moving in a two-layer fluid are also related to the generation of surface waves because of their interaction. In these complex flow phenomena, the experimental measurements and experimental set-up for the wave patterns of the internal waves and surface waves are very difficult to perform in a laboratory. Therefore, studies have mainly been carried out using numerical analysis. However, model tests are needed to evaluate the accuracy of numerical models. In this study, the various experimental conditions were evaluated using CFD simulations before experiments to measure the wave patterns of the internal waves and surface waves in a stratified two-layer fluid. The numerical simulation conditions included variations in the densities of the fluids, depth of the two-layer fluid, and moving speed of the underwater body.

Effect of Surface Roughness on Performance of Axial Compressor Blade (축류압축기 블레이드의 표면조도가 성능에 미치는 영향)

  • Samad, Abdus;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.9-16
    • /
    • 2007
  • Deterioration of surface of turbomachinery blades occurs in course of time due to many factors and hence reduces the performance of the machine. In this paper, the effects of surface roughness of transonic axial compressor blade on performance are studied considering a reference blade and a shape distorted (optimized) blade. Optimal blade is designed considering sweep and lean. Baldwin-Lomax turbulence model is used for flow field analysis and Cebeci-Smith roughness model is formulated for roughness modeling. It is found that, as the surface roughness increases, adiabatic efficiency, total temperature ratio and total pressure ratio decrease while Mach number increases. Performance deterioration is more severe in case of distorted blade as compared to reference blade.