• Title/Summary/Keyword: Fluid-structure interaction simulation

Search Result 164, Processing Time 0.027 seconds

Application of mesh-free smoothed particle hydrodynamics (SPH) for study of soil behavior

  • Niroumand, Hamed;Mehrizi, Mohammad Emad Mahmoudi;Saaly, Maryam
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-39
    • /
    • 2016
  • The finite element method (FEM), discrete element method (DEM), and Discontinuous deformation analysis (DDA) are among the standard numerical techniques applied in computational geo-mechanics. However, in some cases there no possibility for modelling by traditional finite analytical techniques or other mesh-based techniques. The solution presented in the current study as a completely Lagrangian and mesh-free technique is smoothed particle hydrodynamics (SPH). This method was basically applied for simulation of fluid flow by dividing the fluid into several particles. However, several researchers attempted to simulate soil-water interaction, landslides, and failure of soil by SPH method. In fact, this method is able to deal with behavior and interaction of different states of materials (liquid and solid) and multiphase soil models and their large deformations. Soil indicates different behaviors when interacting with water, structure, instrumentations, or different layers. Thus, study into these interactions using the mesh based grids has been facilitated by mesh-less SPH technique in this work. It has been revealed that the fast development, computational sophistication, and emerge of mesh-less particle modeling techniques offer solutions for problems which are not modeled by the traditional mesh-based techniques. Also it has been found that the smoothed particle hydrodynamic provides advanced techniques for simulation of soil materials as compared to the current traditional numerical methods. Besides, findings indicate that the advantages of applying this method are its high power, simplicity of concept, relative simplicity in combination of modern physics, and particularly its potential in study of large deformations and failures.

TWO-WAY F냐 simulation OF THE DIAPHRAGM COMPRESSOR AND NON-RETURN CHECK VALVE (고압용 다이아프램 압축기 및 체크 밸브의 2-way FSI 수치해석)

  • Choi, B.S.;Yoon, H.G.;Yoo, I.S.;Park, M.R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.86-92
    • /
    • 2010
  • A metal diaphragm compressor has been widely used for supplying a high pressures gas. This compressor mainly consists of gas oil space and metal diaphragm. Gas sucked in the gas space is compressed by an oscillating metal diaphragm existed between the gas and oil space. A non-return discharge and suction check-valve are components of the compressor that draw off the compressed oil and gas. Those components are self-actuated by differential pressures. Therefore, the rapid response and stable operating conditions are required. In the present study, to find out the dynamic behavior of the suction, discharge valve and diaphragm compressor, the unsteady flow field has been investigated numerically by using the unsteady two-way FSI (Fluid Structure Interaction) simulation method, $k-{\omega}$ turbulent model and mesh deformation.

  • PDF

Comparison of Experimental and Simulation Results for Flow Characteristics around Jet Impingement/Effusion Hole in Concave Hemispherical Surface (오목한 반구면의 Jet Impingement/Effusion Hole 주변 유동 특성에 대한 실험과 시뮬레이션의 비교)

  • Youn, Sungji;Seo, Heerim;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.28-37
    • /
    • 2022
  • Flow characteristics of jet impingement over concave hemispherical surface with effusion cooling holes is relatively more complex than that of a flat surface, so the experimental validation for computational fluid dynamics (CFD) results is important. In this study, experimental results were compared with simulation results obtained by assuming different turbulence models. The vortex was observed in the region between the central jets where the recirculation structure appeared. The different patterns of vorticity distributions were observed for each turbulence models due to different interaction of the injected jet flow. Among them, the transition k-kl-ω model predicted similarly not only the jet potential core region with higher velocity, but also the recirculation region between the central jets. From the validation, it may be helpful to accurately predict heat and mass transfer in jet impingement/effusion hole system.

Numerical analysis of an offshore platform with large partial porous cylindrical members due to wave forces

  • Park, Min-Su;Kawano, Kenji;Nagata, Shuichi
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.337-353
    • /
    • 2011
  • In the present study, an offshore platform having large partial porous cylindrical members, which are composed of permeable and impermeable cylinders, is suggested. In order to calculate the wave force on large partial porous cylindrical members, the fluid domain is divided into three regions: a single exterior region, N inner regions and N beneath regions, and the scattering wave in each fluid region is expressed by an Eigen-function expansion method. Applying Darcy's law to the porous boundary condition, the effect of porosity is simplified. Wave excitation forces and wave run up on the structures are presented for various wave conditions. For the idealized three-dimensional platform having large partial porous cylindrical members, the dynamic response evaluations of the platform due to wave forces are carried out through the modal analysis. In order to examine the effects of soil-structure interaction, the substructure method is also applied. The displacement and bending stress at the selective nodal points of the structure are computed using various input parameters, such as the shear-wave velocity of soil, the wave height and the wave period. Applying the Monte Carlo Simulation (MCS) method, the reliability evaluations at critical structure members, which contained uncertainties caused by dynamic forces and structural properties, are examined by the reliability index with the results obtained from MCS.

Ship Collision Analysis Technique considering Surrounding Water (주변 유체를 고려한 선박 충돌해석 기법 연구)

  • Lee, Sang-Gab;Lee, Jeong-Dae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.166-173
    • /
    • 2007
  • Collision analysis problems between ship to ship can be generally classified into the external mechanics(outer dynamics) and internal mechanics(inner dynamics). The former can be also dealt with the concept of fluid-structure interaction and the use of rigid body dynamic program, depending on the ways handling the hydrodynamic pressure due to surrounding water. In this study, full scale ship collision simulation was carried out, such as a DWT 75,000 ton striking ship collided at right angle to the middle of a DWT 150,000 struck ship with 10 knots velocity, coupling MCOL, a rigid body mechanics program for modeling the dynamics of ships, to hydrocode LS-DYNA. It could be confirmed that more suitable damage estimation would be performed in the case of the collision simulations with consideration of surrounding water through the comparison with the collision simulation results of fixed struck ships without it. Through this study, the opportunity could be obtained to establish a more effective ship collision simulation technique between ship to ship.

Simulation of Valveless Pump Using Pumping Chamber Connected to Elastic Tube (탄성 튜브가 연결된 펌핑 챔버를 이용한 무밸브 펌프의 수치해석)

  • Shin, Soo Jai;Chang, Cheong Bong;Sung, Hyung Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • A valveless pump consisting of a pumping chamber with an elastic tube was simulated using an immersed boundary method. The interaction between the motion of the elastic tube and the pumping chamber generated a net flow toward the outlet through a full cycle of the pump. The net flow rate of the valveless pump was examined by varying the stretching coefficient, bending coefficient, and aspect ratio of the elastic tube. Photographs of the fluid velocity vectors and the wave motions of the elastic tube were examined over one cycle of the pump to gain a better understanding of the mechanism underlying the valveless pump. The relationship between the gap in the elastic tube and the average flow rate of the pump was analyzed.

Numerical analysis of the venturi flowmeter in the liquid lead-bismuth eutectic circuit after long-term operation

  • Zhichao Zhang;Rafael Macian-Juan;Xiang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1081-1090
    • /
    • 2024
  • The liquid Lead-bismuth eutectic is used as the coolant for Gen-IV reactor concepts. However, due to its strong corrosive and high operating temperature, it is difficult to accurately measure the flow rate in long-term operating conditions. Venturi flowmeter is a simple structured flowmeter, which plays a very important role in the flow measurement of high-temperature liquid metals, especially since the existing flowmeters are difficult to be competent. It has the advantages of easy maintenance and stable operation. Therefore, it is necessary to study the operating conditions of the venturi flowmeter under high-temperature conditions. This work performs a series of simulations of the fluid-solid interaction between the flow liquid metal and venturi flowmeter with COMSOL software, including the dimensional sensitivity analysis of the venturi flowmeter to explore the most suitable structure and parameters for liquid heavy metal, the sensitivity analysis of the geometric parameters of the venturi tube on the varying conditions. It shows that when the contraction angle of the venturi flowmeter is 33°, the diffusion angle is 13°, the diameter of the throat is 8 mm, and the temperature of the lead-bismuth eutectic is 733.15 K, it is most suitable for the measurement in the lead-bismuth circuit.

Numerical characterization of real railway overhead cables

  • Sanchez-Rebollo, Cristina;Velez, Enrique;Jimenez-Octavio, Jesus R.
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.105-117
    • /
    • 2015
  • This paper presents a numerical characterization of real railway overhead cables based on computational fluid dynamics (CFD). Complete analysis of the aerodynamic coefficients of this type of cross section yields a more accurate modelling of pressure loads acting on moving cables than provided by current approaches used in design. Thus, the characterization of certain selected commercial cables is carried out in this work for different wind speeds and angles of attack. The aerodynamic lift and drag coefficients are herein determined for two different types of grooved cables, which establish a relevant data set for the railway industry. Finally, the influence of this characterization on the fluid-structure interaction (FSI) is proved, the static behavior of a catenary system is studied by means of the finite element method (FEM) in order to analyze the effect of different wind angles of attack on the stiffness distribution.

Flow-Induced Vibration Analysis of 2-DOF System Using Unstructured Euler Code (비정렬 오일러 코드를 이용한 2자유도계 시스템의 유체유발 진동해석)

  • Kim, Dong-Hyun;Park, Young-Min;Lee, In;Kwon, O-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.675-680
    • /
    • 2001
  • In this study, a fluid/structure coupled analysis system using computational fluid dynamics and computational structural dynamics has been developed. The unsteady flow fields are predicted using unstructured Euler code. Coupled time-integration method (CTIM) was applied to computer simulation of the flow-induced vibration phenomena. To investigate the interaction effect of shock motions, 2-DOF airfoil systems have been studied in the subsonic and transonic flow region. Also, aeroelastic analyses for the airfoil with an arbitrary object are performed to show the analysis capability and interference effects for the complex geometries. The present results show the flutter stabilities and characteristics of aeroelastic responses with moving shock effects.

  • PDF

Numerical Simulation of Pseudo-Shock Waves with Different Confinement Parameters (서로 다른 Confinement parameter를 가지는 의사충격파의 전산유동해석)

  • Kang, Kyungrae;Choi, Jong Ho;Song, Seung Jin;Do, Hyungrok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.336-340
    • /
    • 2017
  • When supersonic flow is through an internal duct, there forms a flow structure called pseudo-shock. Pseudo-shock is a result of shockwave-boundary layer interaction(SBLI) and to simulate pseudo-shock correctly, one needs to correctly anticipate not only the strength of the shock but also the boundary layer behavior as well. In this study, pseud-shockwave structure at a rectangular duct will be numerically simulated using dedicated inlet boundary conditions to obtain accurate solution in terms of its structure and pressure rise pattern.

  • PDF