• 제목/요약/키워드: Fluid-elastic

검색결과 355건 처리시간 0.022초

동하중을 받는 원통형 액화연료 탱크의 배플에 따른 슬로싱 저감 특성 (Sloshing Reduction Characteristics to Baffle for Cylindrical Liquefied Fuel Tank subject to Dynamic Load)

  • 구준효;조진래;정의봉;김당주
    • 한국소음진동공학회논문집
    • /
    • 제19권9호
    • /
    • pp.950-959
    • /
    • 2009
  • Liquid fluctuation called sloshing within liquid-storage tank gives rise to the significant effect on the dynamic stability of tank. This liquid sloshing can be effectively suppressed by installing baffles within the tank, and the suppression effect depends strongly on the design parameters of baffle like the baffle configuration. The present study is concerned with the parametric evaluation of the sloshing suppression effect for the CNG-storage tank, a next generation liquefied fuel for vehicles, to the major design parameters of baffle, such as the baffle configuration, the installation angle and height, the hole size of baffle. The coupled FEM-FVM analysis was employed to effectively reflect the interaction between the interior liquid flow and the tank elastic deformation.

비활성 그리고 활성 단층지역 내부와 주변에서의 응력장에 대한 수치적 분석 (Numerical Analysis of Stress Regimes in and around Inactive and Active Fault Zones)

  • 정우창;송재우
    • 한국방재학회 논문집
    • /
    • 제1권1호
    • /
    • pp.117-125
    • /
    • 2001
  • 비활성 그리고 황성 단층지역의 내부와 주변에서 발생하는 응력장의 변화에 대한 수치적 분석이 수행되었다. 존재하는 비활성 단층지역 근처에서의 응력장은 단층의 방향과 단층화된 암반과 주위의 비단층화된 암반의 탄성적 특성 사이의 대조에 따라 변화한다. 활성 단층지역 주위의 응력장에 대한 분석에서, 만약 단층지역의 항복응력이 초과된다면, 단층지역 내에서의 국부화된 전단응력은 주위의 비단층화된 암반에서의 평균응력 보다 작게 되는 단층 내에서의 평균응력의 감소를 유발시킨다. 따라서 이러한 응력경사는 단층지역내로 유체의 흐름을 기대할 수 있다.

  • PDF

Flow Dynamics Near End-To-End Anastomoses - Part I. In Vitro Compliance Measurement -

  • Kim, Y.H
    • 대한의용생체공학회:의공학회지
    • /
    • 제13권2호
    • /
    • pp.165-174
    • /
    • 1992
  • Compliance mismatch across an end-to-end anastomosis was measured In the In vitro experimental setup. A 35mm camera was used and Image process was done in Gould/ DeAnza Image processor. The results showed that compliances of Penrose tubing and synthetic PTFE grafts were In good agreement with the previously reported In vivo data. PTFE grafts exhibited a nonlinear behavior with compliance decreasing with Increasing transmural pressure, whereas the compliance of the Penrose tubing remained relatively constant within the range of the pressures in which data were obtained. The lumen cross sections at the anastomosis were affected by the suture and the mismatch In compliance between the Penrose tubing and vascular grafts. The varla~lons In the lumen dtameter at the anastomosis was more pronounced with increasing transmural pressures. From the present study, it was clearly demonstrated that the compliance of prosthetic grafts Is much lower than that of the arteries. In addition to the hemodynamlc consequences, compliance mismatch across the anastomosis has been known to lead to Increased anastomotlc and suture stresses with resultant suture line dehlscence and false aneurysm formation. Thus, there are good hemodynamic reasons to suppose that Introduction of a less compliant arterial graft Into the arterial circulation wlll be damaging and that grafts should be made to match the elastic behavior of their host arteries as closely possible.

  • PDF

시일과 코팅된 스틸면 사이의 구형 입자에 의한 접촉해석 (Contact Analysis Between Rubber Seal, a Spherical Particle and Coated Steel Surface)

  • 박태조;조현동
    • Tribology and Lubricants
    • /
    • 제25권4호
    • /
    • pp.225-230
    • /
    • 2009
  • Seals are very useful machine components in protection of leakage of lubricant or working fluid, and incoming of debris from outside. Various elastomer are widely used as sealing materials and the shaft surfaces are generally coated with high hardness material after heat treatment. It is generally known that the foreign debris and wear particles get stuck into sealing surface, the steel shaft surface can be damaged and worn by mainly abrasive wear. In this paper, using MARC, contact analysis are conducted to show the hard coated steel shaft surface can be fatigue failed by very small elastic particle intervened between seal and steel surface. Variations of contact and von-Mises stress distributions and contact half-widths with interference and coating thickness are presented. The maximum von-Mises stress occurs always in the coating layer or between coated layer/substrate interface. Therefore the coated sealing surface can be fatigued and then failed by very small particles. The results can be used in design of sealing surface and further studies are required.

피봇 강성을 고려한 틸팅 패드 저널 베어링의 해석 (Analysis of Tilting Pad Journal Bearings Considering Pivot Stiffness)

  • 최태규;김태호
    • Tribology and Lubricants
    • /
    • 제30권2호
    • /
    • pp.77-85
    • /
    • 2014
  • This study set out to predict the load capacity and rotordynamic coefficients of tilting-pad journal bearings, taking the pivot stiffness into account. The analysis uses rocker-back (cylindrical) and ball in socket (spherical) pivot models, both of which are based on Hertzian contact stress theory. The models ascertain the non-linear elastic deformation of the pivots according to the applied load, pivot geometry, and material properties. At present, the Reynolds equation for an isothermal, isoviscous, and incompressible fluid is used to calculate the film pressure by using the finite-element method, after which the Newton-Raphson method is used to simultaneously find the journal center location, pad angles, and pivot deflections. The bearing analysis, excluding the pivot models, is validated using predictions those are readily available in the literature. As the rotor speed increases, the predicted journal eccentricity and damping coefficients decrease, but the stiffness coefficients increase, as expected. Most importantly, the implementation of the pivot models increases the journal eccentricity but significantly decreases the stiffness and damping coefficients of the tilting-pad journal bearings.

A Simplified Estimation of Stress Intensity Factor on the Hertzian Contact

  • Jin, Songbo;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • 제1권1호
    • /
    • pp.8-11
    • /
    • 2000
  • A surface crack in a semi-infinite body under Hertzian contact was considered. The simplified method used to estimate stress intensity factor K for specimen was extended to the model which is chosen in this paper. Very satisfactory results are obtained comparing with those known and it is proved that the method is more convenient than other methods. The results of the analysis show that due to the presence of $K_I$ for unlubricated condition, mode I fracture is active in the field below the surface and the maximum $K_{I}$ is obtained when the trailing edge of Hertzian contact reaches a position over the crack. The magnitudes of stress intensity factors $K_I$ and $K_Il$ increase with increasing friction forces. For a surface crack perpendicular to the contact surface, the stress intensity factor $K_I$ reaches its maximum value at a depth very close to the surface. Driving forve fer crack initiation and propagation is $K_I$ for unlubricated condition and $K_Il$ for both fluid and boundary lubricated condition.n.

  • PDF

무한 평판 주위에 형성된 수중 기포층의 방사소음 감소 효과 (Noise Reduction Effect of an Air Bubble Layer on an Infinite Flat Plate)

  • 김종철;오준석;조대승
    • 한국소음진동공학회논문집
    • /
    • 제17권2호
    • /
    • pp.168-176
    • /
    • 2007
  • The mixture sound speed in bubbly fluids is highly dispersive due to differences of the density and compressibility between bubbles and fluids. The dispersion range in bubbly fluids expands to a higher frequency than the resonance frequency of an air bubble. A theoretical model was developed to compute the reduction of radiation noise that is generated by a force applied on an infinite flat plate using a bubble layer as a compliant baffle. For evaluating the effectiveness of a bubble layer in reducing the structure-borne noise of an infinite elastic plate, the noise reduction levels for various parameters such as the thickness of bubble layers, the volume fractions and the distribution types of bubbly fluids are calculated numerically. The noise reduction effect of an air bubble layer on an infinite flat plate is considerable level and similar to the tendency of dispersion of bubbly fluids. It is recommended that the thickness of a bubble layer should be increased with keeping an appropriate volume fraction of an air bubble for the most effective reduction of the radiation noise.

Hygrothermal Fracture Analysis in Dissimilar Materials

  • Ahn, Kook-Chan;Lee, Tae-Hwan;Bae, Kang-Yul
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권2호
    • /
    • pp.65-72
    • /
    • 2001
  • This paper demonstrates an explicit-implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for an existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory. Darcy's law is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full Newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

COMPARISON OF DIFFERENT NUMERICAL SCHEMES FOR THE CAHN-HILLIARD EQUATION

  • Lee, Seunggyu;Lee, Chaeyoung;Lee, Hyun Geun;Kim, Junseok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권3호
    • /
    • pp.197-207
    • /
    • 2013
  • The Cahn-Hilliard equation was proposed as a phenomenological model for describing the process of phase separation of a binary alloy. The equation has been applied to many physical applications such as amorphological instability caused by elastic non-equilibrium, image inpainting, two- and three-phase fluid flow, phase separation, flow visualization and the formation of the quantum dots. To solve the Cahn-Hillard equation, many numerical methods have been proposed such as the explicit Euler's, the implicit Euler's, the Crank-Nicolson, the semi-implicit Euler's, the linearly stabilized splitting and the non-linearly stabilized splitting schemes. In this paper, we investigate each scheme in finite-difference schemes by comparing their performances, especially stability and efficiency. Except the explicit Euler's method, we use the fast solver which is called a multigrid method. Our numerical investigation shows that the linearly stabilized stabilized splitting scheme is not unconditionally gradient stable in time unlike the known result. And the Crank-Nicolson scheme is accurate but unstable in time, whereas the non-linearly stabilized splitting scheme has advantage over other schemes on the time step restriction.

불규칙 이동분포하중을 받는 타이어의 구조 진동 소음 제어를 위한 음향방사 해석 (Sound Radiation Analysis for Structural Vibration Noise Control of Tire Under the Action of Random Moving Line Forces)

  • 김병삼;이성철
    • 소음진동
    • /
    • 제5권2호
    • /
    • pp.169-181
    • /
    • 1995
  • A theoretical model has been studied to describe the sound radiation analysis for structural vibration noise control of tire under the action of random moving line forces. When a tire is analyzed, it has been modeled as a curved beam with distributed springs and dash-pots which represent the radial, tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y = 0 and to be axially infinite. The material of curved beam and elastic foundation are assumed to be lossless, and governed by the law of Bernoulli-Euler beam theory. The expression for sound power is integrated numerically and its results examined as a function of Mach number(M), wavenumber ratio(.gamma.) and stiffness factor(.PSI.). The experimental investigation for structural vibration noise of tire under the action of random moving line forces has been made. Based on the STSF(Spatial Transformation of Sound Field) techniques, the sound power and sound radiation are measured. The experimental results show that operating condition, material properties and design factors of the tire have a great effect on the sound power and sound radiation characteristics.

  • PDF