• 제목/요약/키워드: Fluid transfer

검색결과 1,803건 처리시간 0.028초

사각돌출형 표면거칠기가 있는 이중동심원관 내의 난류유동과 열전달 (Turbulent Fluid Flow and Heat Transfer in Concentric Annuli with Square-Ribbed Surface Roughness)

  • 안수환;이윤표;김경천
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1294-1303
    • /
    • 1993
  • 본 논문은 Lee의 평행평판 채널내의 난류유동 모델을 사용하여 비대칭적 경계 를 갖는 이중관내 거칠기 표면위에서의 흐름을 취급하였다. 해석에서 표면거칠기는 속도 형상에 단지 국부적으로 영향을 미친다고 가정하여 한쪽 면에서만 사각형 거칠기 요소를 가진 평행관 사이의 유동에 관해 이미 얻은 실험 관계식을 이용하였다. 거칠 기의 합성효과는 압력손실 증가에 대한 열전달 증가에 대해 거친관과 매끈한 관의 경우를 비교한 값에 의하여 알수 있었다.그러므로, 전체적 효율측면에서 유리하게 열전달률을 증가시킬수 있는 이중관내의 바람직한 인공의 거칠기형태(P/.epsilon., S/.epsilon.,.alpha., etc.)를 얻을 수 있었다.

밀폐형 2상 열사이폰의 열전달 특성에 관한 실험적 연구 (An Experimental Study on the Heat Transfer Characteristics of Two-phase closed Thermosyphon)

  • 조기현;백이;정형길
    • 한국산업융합학회 논문집
    • /
    • 제5권3호
    • /
    • pp.165-171
    • /
    • 2002
  • The thermosyphon has been used as a heat transmission device in the heat recovery of low level energy and cooling for heat generating equipments. Many studies on the working fluids and wicks have been reported to improve the heat transfer efficiency of the thermosyphon. A low temperature heat pipe with acetone is chosen in the present study to compare the heat transfer characteristics due to pouring amount of working fluid, magnitude of power supplied and tilt angles. The thermosyphon made ⵁ$15.88{\times}0.8t{\times}600mm$ of copper, evaporation section 200mm, insulation section 25mm, condensation 375mm. Heat transfer rate of the thermosyphon increase as magnitude of power supplied increase and observe dry out phenomenon at 5~10% of pouring amount of working fluid. So thermosyphon at the 150kJ/s judged to need 12% or more. Heat transfer rate of the thermosyphon have nothing to do with tilt angles. Dry out phenomenon of the thermo syphon makes it possible that a low temperature thermosyphon may be used to control temperature and heat transfer of a system when the critical quantity of a working fluid is supplied in the thermosyphon.

  • PDF

Hall Effect on Couette Flow with Heat Transfer of a Dusty Conducting Fluid Between Parallel Porous Plates Under Exponential Decaying Pressure Gradient

  • Attia Hazem A.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.569-579
    • /
    • 2006
  • In the present study, the unsteady Couette flow with heat transfer of a dusty viscous incompressible electrically conducting fluid under the influence of an exponential decaying pressure gradient is studied without neglecting the Hall effect. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below while the fluid is acted upon by an external uniform magnetic field is applied perpendicular to the plates. The governing equations are solved numerically using finite differences to yield the velocity and temperature distributions for both the fluid and dust particles.

MHD Pulsatile Flow and Heat Transfer of Two Immiscible Couple Stress Fluids Between Permeable Beds

  • Kumar, Deepak;Agarwal, Manju
    • Kyungpook Mathematical Journal
    • /
    • 제61권2호
    • /
    • pp.323-351
    • /
    • 2021
  • The present paper addresses magnetohydrodynamic pulsating flow and heat transfer of two immiscible, incompressible, and conducting couple stress fluids between two permeable beds. The flow between the permeable beds is assumed to be governed by Stokes' [28] couple stress fluid flow equations, whereas the dynamics of permeable beds is determined by Darcy's law. In this study, matching conditions were used at the fluid-fluid interface, whereas the B-J slip boundary condition was employed at the fluid-porous interface. The governing equations were solved analytically, and the expressions for velocity, temperature, mass flux, skin friction, and rate of heat transfer were obtained. The analytical expressions were numerically evaluated, and the results are presented through graphs and tables.

유체-구조 연성 해석을 위한 common-refinement 기반 불일치 격자 경계면에서의 정보 전달 기법 연구 (The study of data transfer method non-matching meshes interface using common-refinement method for fluid-structure interface)

  • 한상호;김동현;이창수;김종암
    • 한국항공우주학회지
    • /
    • 제42권3호
    • /
    • pp.191-198
    • /
    • 2014
  • 본 연구는 유체-고체 연성 해석이 활발히 진행되고 있는 고체로켓의 3차원 연소실 상경계면 형상에 대해 정보 전달 기법 중 하나인 공통세분 기법의 적용을 목적으로 수행되었다. 본 기법은 불일치하는 경계면간 정보 전달에도 보존성과 정확도를 동시에 만족시킬 수 있다는 장점을 갖는다. 기법 구현은 상경계면에 공통표면을 구성하고 특정 오차를 최소화 시키는 최소화 내삽법을 적용하는 과정으로 수행되었다. 이를 바탕으로 다양한 다차원 상경계면 형상에서 연속 및 불연속 함수를 이용한 정보 전달 실험을 수행하였고, 다른 기법들과 해석 결과를 비교하였다.

Study on Heat Transfer Characteristics according to Flowing Particles in a Cold Water Tube

  • Park, Ki-Won;Kim, Myoung-Jun;Jung, Sung-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.243-251
    • /
    • 2007
  • This experiment was conducted to investigate the effect of particles on the heat transfer characteristics of fluids flowing in a cold water tube. Plastic beads with 3 different sizes were used as flowing particles with cold water. An experimental test section was composed of concentric double tubes having diameters of 25mm for the inner tube and 50mm for the outer tube. The materials for the inner and outer tubes are copper and PVC respectively. It was found that the particles enhanced the heat transfer coefficient by random and vortex motion in the fluid. Hence the heat transfer coefficients for the fluid with 2mm, 5mm and $2{\times}6mm$ particles were $7%{\sim}37%$ higher than the fluid without the particles.

루우프형 2상 유동 열사이폰의 응축열전달 특성에 관한 연구 (A Study on the Characteristics of Condensation Heat Transfer of Two-Phase Loop Thermosyphons)

  • 박종운;조동현
    • 수산해양교육연구
    • /
    • 제26권4호
    • /
    • pp.894-901
    • /
    • 2014
  • This study concerns the performance of condensation heat transfer in two-phase loop thermosyphons. In the present work, R134a has been used as the working fluid. Liquid fill charge ratio defined by the ratio of working fluid volume to total internal volume of thermosyphon, heat flux and wind speed of condensation have been used as the experimental parameters. The results show that the filling rate of working fluid and heat flux are very important factors for the operation of two-phase loop thermosyphons. The optimum liquid fill charge ratio for the best condensation heat transfer rate was 80%.

A Convective Heat Transfer Correlation for Turbulent Gas-Liquid Two-Phase Flow in Vertical Pipes

  • Kim, Dong-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권4호
    • /
    • pp.27-36
    • /
    • 2001
  • A new two-phase non-boiling convective heat transfer correlation for turbulent flow $(Re_{SL}>4000)$ in vertical tubes with different fluid flow patterns and fluid combinations was developed using experimental data available from the literature. The correlation presented herein originates from a careful analysis of the major non-dimensional parameters affecting two-phase heat transfer. This model takes into account the appropriate contributions of both the liquid and gas phases using the respective cross-sectional areas occupied by the two phases. A total of 255 data points from three available studies (which included the four sets of data) were used to determine the curve-fitted constants in the improved correlation. The performance of the new correlation was compared with two-phase correlations from the literature, which were developed for specific fluid combinations.

  • PDF

분포정수계 유압관로 모델의 동특성 해석 (Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model)

  • 김도태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.

나선 그루브와 평관형 열사이폰의 응축열전달 성능 향상에 관한 연구 (A Study on the Improvement of the Condensation Heat Transfer Performance of the Helical Grooved and Plain Thermosyphons)

  • 한규일;박종운;조동현
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.47-53
    • /
    • 2006
  • This study concerns the performance of condensation heat transfer in plain and grooved thermosyphons. Distilled water, methanol, ethanol have been used as the working fluids. In the present work, a copper tube of the length of 1200mm and 14.28mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550mm, while the remaining part of the thermosyphon tube is adiabatic section. A study was carried out with the characteristics of heat transfer of the thermosyphon 50, 60, 70, 80, 90 helical grooves in which boiling and condensation occur. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon, the kinds of working fluid, the inclination angle, grooves and operating temperature have been used as the experimental parameters. The experimental results show that the number of grooves, the amount of the working fluid, the kind of working fluid, angle of inclination angle are very important factors for the operation of thermosyphon. The maximum heat transfer was obtained when the liquid fill was about 20 to 25 % of the thermosyphon volume. The relatively high rates of heat transfer have been achieved in the thermosyphon with grooves. The helical grooved thermosyphon having 70 to 80 grooves in water, 60 to 70 grooves in methanol and 70 to 80 grooves in ethanol shows the best heat transfer coefficient in both condensation.

  • PDF