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Hall Effect on Couette Flow with Heat Transfer of a Dusty
Conducting Fluid Between Parallel Porous Plates Under
Exponential Decaying Pressure Gradient
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In the present study, the unsteady Couette flow with heat transfer of a dusty viscous incom-

pressible electrically conducting fluid under the influence of an exponential decaying pressure

gradient is studied without neglecting the Hall effect. The parallel plates are assumed to be

poroﬁs and subjected to a uniform suction from above and injection from below while the fluid

is acted upon by an external uniform magnetic field is applied perpendicular to the plates. The

governing equations are solved numerically using finite differences to yield the velocity and
temperature distributions for both the fluid and dust particles.
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1. Introduction

The importance and application of solid/fluid
flows and heat transfer in petroleum transport,
wastewater treatment, combustion, power plant
piping, corrosive particles in engine oil flow, and
many others are well known in the literature.
Particularly, the flow and heat transfer of elec-
trically conducting fluids in channels and circular
pipes under the effect of a transverse magnetic
field occurs in magnetohydrodynamic (MHD)
generators, pumps, accelerators, and flow meters
and has possible applications in nuclear reactors,
filtration, geothermal systems, and others. The
possible presence of solid particles such as ash or

* Corresponding Author,

E-mail : ah1113@yahoo.com

TEL : +00966-6-3826928; FAX : +00966-6-3800911
Department of Mathematics, College of Science, Al-
Qasseem University, P.O. Box 237, Buraidah 81999,
Saudi Arabia, On leave from : Department of Engineer-
ing Mathematics and physics, Fac. of Engineering, El-
Fayoum University, El-Fayoum, Egypt. (Manuscript
Received November 9, 2005; Revised February 6, 2006)

soot in combustion MHD generators and plasma
MHD accelerators and their effect on the per-
formance of such devices led to studies of parti-
culate suspensions in conducting fluids in the
presence of magnetic fields. For example, in an
MHD generator, coal mixed with seed is fed into
a combustor. The coal and seed mixture is burn-
ed in oxygen and the combustion gas expands
through a nozzle before it enters the generator
section. The gas mixture flowing through the
MHD channel consists of a condensable vapor
(slag) and a non-condensable gas mixed with
seeded coal combustion products. Both the slag
and the non-condensable gas are electrically con-
ducting (Lohrabi, 1980 ; Chamkha, 2000). The
presence of the slag and the seeded particles
significantly influences the flow and heat transfer
characteristics in the MHD channel. Ignoring the
effect of the slag, and considering the MHD gen-
erator start-up condition, the problem reduces to
unsteady two-phase flow in an MHD channel.
The hydrodynamic flow of dusty fluids was
studied by a number of authors (Saffman, 1962 ;
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Gupta et al., 1976 ; Prasad et al., 1979 ; Dixit, 1980 ;
Ghosh et al., 1984) . Later the hydromagnetic flow
of dusty fluids was studied (Singh, 1976 ; Mitra
et al., 1981 ; Borkakotia et al.,, 1983 ; Megahed
et al.,, 1988 ; Aboul-Hassan et al.,, 1991 ; Attia,
2005). In the above mentioned work the Hall
term was ignored in applying Ohm’s law, as they
have no marked effect for small and moderate
values of the magnetic field. However, the current
trend for the application of magnetohydrodyna-
mics is towards a strong magnetic field, so that
the influence of electromagnetic force is notice-
able under these conditions, and the Hall current
is important and it has a marked effect on the
magnitude and direction of the current density
and consequently on the magnetic force term
(Crammer et al., 1973). The effect of the Hall
current on the Hartmann flow of a clean fluid was
studied by a number of authors (Sutton et al.,
1965 ; Soundalgekar et al., 1979; 1986; Attia,
1998 : 2002). Aboul-Hassan and Attia (2002)
studied the influence of the Hall current on the
flow and heat transfer of a dusty conducting fluid
in a rectangular channel under a constant pres-
sure gradient.

In the present work, the unsteady Couette flow
with heat transfer of an electrically conducting,
viscous, incompressible, dusty fluid is studied
with the consideration of the Hall current. The
fluid is assumed to be incompressible and elec-
trically conducting and the particle phase is as-
sumed to incompressible, electrically non-con-
ducting dusty and pressureless. The upper plate is
moving with a constant velocity while the lower
plate is kept stationary. The fluid is flowing
between two infinite electrically insulating porous
plates maintained at two constant but different
temperatures while the particle phase is assumed
to be electrically non-conducting. The fluid’is
subjected to a uniform suction from above and a
uniform injection from below and mass conser-
vation is assumed. An external uniform magnetic
field is applied perpendicular to the plates while
no electric field is applied and the induced mag-
netic field is neglected by assuming a very small
magnetic Reynolds number. The fluid is acted
upon by an exponential decaying pressure gradi-

ent. The governing equations are solved numeri-
cally using the finite difference approximations to
obtain the temperature distributions for both the
fluid and dust particles. The effect of the magnetic
field, the Hall current and the suction velocity on
both the velocity and temperature fields of the
fluid and dust particles are reported.

2. Description of t.he Problem

The dusty fluid. is assumed to be flowing be-
tween two infinite horizontal porous plates locat-
ed at the y==/ planes and extend from x=—00
to ©o and from z=—00 to co. The upper plate is
moving with a constant velocity [/, while the
lower plate is kept stationary. The plates are
subjected to a uniform suction from above and a
uniform injection from below. Thus the y-com-
ponent of the velocity of the fluid is constant and
denoted by v,. The dust particles are assumed to
be electrically non-conducting spherical in shape
and uniformly distributed throughout the fluid
and to be big enough, so that they are not pumped
out through the porous plates and have no y-
component of velocity. The two plates are as-
sumed to be electrically non-conducting and kept
at two constant temperatures 7; for the lower
plate and 7 for the upper plate with 72> 71 A
uniform pressure gradient, which is taken to be
exponentially decaying with time, is applied in
the x-direction. A uniform magnetic field B, is
applied in the positive y-direction. This is the
only magnetic field in the problem as the induced
magnetic field is neglected by assuming a very
small magnetic Reynolds number (Crammer et
al., 1973). It is required to obtain the time varying
velocity and temperature distributions for both
fluid and dust particles. Due to the inclusion of
the Hall current term, a z-component of the
velocities of the fluid and of dust particles is
expected to arise. Since the plates are infinite in
the x and z-directions, the physical quantities are
independent of the x or z coordinates and conse-
quently, they do not change in these directions
and consequently the problem is essentially one-
dimensional. The governing equations for this
study are based on the conservation laws of mass,
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linear momentum and energy of both phases.
3. The Velocity Distribution

The flow of fluid is governed by the momentum
equation

Di_ & 2 | T .
pﬁt—-——VP-i—ﬂV 7+JxB,—KN(7—17,) (1)
where © is the density of clean fluid, g is the
viscosity of clean fluid, ¥ is the velocity of the
fluid, D=u(y, £)i+voj+w(y, ) K, 3, is the
velocity of dust particles, Tp=wu»{y, t) i+ wp (v,
t) /;, fis the current density, N is the number of
dust particles per unit volume, K is the Stokes
constant =67ua, and g is the average radius of
dust particles.

The first three terms in the right-hand side of
Eq. (1) are, respectively, the pressure gradient,
viscosity, and Lorentz force terms. The last term
represents the force due to the relative motion
between fluid and dust particles. It is assumed
that the Reynolds number of relative velocity is
small. In such a case the force between dust and
fluid is proportional to the relative velocity
(Saffman, 1962). If the Hall term is retained, the
current density J from the generalized Ohm's law
is given by (Crammer et al., 1973 ; Sutton et al.,
1965) ;

T=0[E+VAB,~B(JAB.)] (2)

where ¢ is the electric conductivity of the fluid,
and A is the Hall factor (Crammer et al., 1973 ;
Sutton et al., 1965). Solving Eq. (2) for J gives

oB%
1+

JAB,= Hutmw) i+ (w—mu) k] (3)
where m=0BBo, is the Hall parameter (Crammer
et al., 1973 ; Sutton et al., 1965). Thus, in terms of
Eq. (3), the two components of Eq. (1) read

du,  du__dP  Fu_ oB;
Pg T oV dy d oy 1+m2(u+mw) (4)

—KN{u—wuy)
OW | oy, O Fw __aBs (w—mu)
O of TPV oy T e T 1w (s)
—‘K]V<1/U“Wp)

The motion of the dust particles is governed by
Newton’s second law applied in the x and z-

directions
my 28— KN (1~ ) (©)
mo 222 — KN (10— 10,) (7)

where mp is the average mass of dust particles. If
dust particles are big in size, there will be accu-
mulation of particles near the upper plate and N
becomes a function of y. Due to the non-unifor-
mity of particle density, diffusion effects arise,
which tends to push particles downwards with
force which balances the upward friction force
with the fluid molecules. The y-component of the
momentum equation of dust particles reads

dN

dy

where Kuv, is the drag force per particle, /z and
D are the mobility and diffusion coefficient for
dust particles. This equation has the solution

N=Ny,e™?

ﬁK]vUoz -

where the constant y=uKv,/D. N, is related to
the average density N, of dust particles by

N, sinh y4

h
=1 g —
Ny= 2h:6Nae Ydy= o

If vk is much less than unity then, as a first order
approximation, one can take V=N, throughout
the analysis.

It is assumed that the pressure gradient is ap-
plied at =0 and the fluid starts its motion from
rest. Thus,

10 u=up=w=wp=0 (8a)

For ¢>0, the no-slip condition at the plates
implies that

>0, y=—h . u=up=w=wp=0 (8b)
>0, y=h: u=U, up=w=wp,=0 (8c)

4. The Temperature Distribution
Heat transfer takes place from the upper hot

plate to the lower cold plate by conduction
through the fluid. Since the hot plate is above,
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there is no natural convection, however, there is a
forced convection due to the suction and injec-
tion. In addition to the heat transfer, there is a
heat generation due to both the Joule and viscous
dissipations. The dust particles gain heat from the
fluid by conduction through their spherical sur-
face. Since, the problem deals with a two-phase
flow, two energy equations are required (Crammer
et al., 1973 ; Schlichting, 1968) . The energy equa-
tions describing the temperature distributions for
both the fluid and dust particles read

e AN

oB; |, 0y OoCs
0T, 1 _

where T is the temperature of the fluid, 7} is
the temperature of the particles, ¢ is the specific
heat capacity of the fluid at constant volume, k&
is the thermal conductivity of the fluid, pp is the
mass of dust particles per unit volume of the fluid,
yr is the temperature relaxation time, and ¢s is
the specific heat capacity of the particles.

The last three terms on the right-hand side
of Eq. (9) represent the viscous dissipation, the
Joule dissipation (72/0), and the heat conduction
between the fluid and dust particles respectively.
The temperature relaxation time depends, in gen-
eral, on the geometry, and since the dust particles
are assumed to be spherical in shape, the last term
in Eq. (9) is equal to 47aNk(T»-T). Hence

_3Prypcs
2c
where 7, is the velocity relaxation time=2p0;a%/9
4, Pris the Prandtl number=uc/k, and ps is the
material density of dust particles=3p0,/47a*N,.

Tand T, must satisfy the initial and boundary

conditions
t<0: T=T=T1
t>0, y=—h. T=T,="T
t>0, y=h . T: Tp: B

Equations (4)-(11) can be made dimensionless
by introducing the following dimensionless vari-

(11a)
(11b)
(11c)

ables and parameteis

6 9 =22 11U (g gy (1),
o , S P
(uPa wp) = (upUjUp) > - p gs
~ T—T & To— T,
T=p—1 Tr=7—1

S=uvo/Ub, the suction parameter,

Re= Uoph/ 1, is the Reynolds number,
Ha=Bohv'o/ 1, the Hartmann number,
Ec=U%/c(T:—T), the Eckert number,
G=mpp/ oMK, is the particle mass parameter,
R=KN.#*/ y, is the partlcle concentration para-
meter,

Lo=pW/uyr, is the temperature relaxation time
parameter.

In terms of the above non-dimensional quantities
Egs. (4)~(11) read (the hats are dropped for con-
venience) '

P 1 Fu HE

%—?-FS g;l L {u+mw)

2 2
Re dr ' Re 9% Re(l+m) (12)
R wou—up)
" TRe 4
ow 1 Fw Ha
S G Re S Relit gy 0
(13)
R )
Re »
G ‘95;"—14 Up (14)
G 35‘;” =w—wp (15)
10 u=up=w=wp=0 (16a)
>0, y=—h ' u=up=w=w,=0  (16b)
>0, yv=h u=1, up=w=wp=0  (16c)
oT 0T _ _1_32_T & du\? (0w \?
ot TS dy  RePr gy [( 8y>+( 3})” (17)
HdEc , , 2R
+———Re(1+m2) (u*+u®) + (Tp 7)
0T, _ _ _
aT - LO(TP T) (18)
10 T=T,= (19a)
t>0, y=—1. T=T,=0 (19b)
>0, y=1. T=Tp=1 (19¢)
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where the pressure gradient is assumed in the
form dP/dx=Ce .

Equations (12)-(19) represent a system of par-
tial differential equations which is solved nu-
merically using the finite difference approxima-
tion. The Crank-Nicolson implicit method (Ames,
1977) is used at two successive time levels. Finite
difference equations relating the variables are
obtained by writing the equations at the mid
point of the computational cell and then replacing
the different terms by their second order central
difference approximation in the y-direction. The

diffusion terms are replaced by the average of the
central differences at two successive time-levels.
Finally, the resulting block tri-diagonal system is
solved using the generalized Thomas-algorithm
(Ames, 1977). The computational domain is di-
vided into meshes each of dimension At and Ay
in time and space, respectively. We define the vari-
ables A=0u/dy, B=0ow/dy a and H=0T/0dy
to reduce the second order differential Egs. (12) -
(15) and (17) to first order differential equations.
The finite difference representations for the re-
sulting first order differential take the form

< Uit 1,01 — Uigrit Uirrs

2A¢ 4

1 (AirintAijr) — (A +Au)

— Ui >+S < At Aimt At A >

__ 1 dPll<
Re dx ' Re 2Ay

>_ (14+m?)
Uit Uit Ui+ Uiy

Hd ( Uirri1t Ui+ Uieri + Uiy >

‘ (20)

mHa* ( WirtinF Wi+ Wi, T wij )_i(
(1+m?) 4 !/ Re

+ R < Upir 15017t Upiin1 T Upir1,i — Upiy )

Re 4 /

i )

< Witl,ir1 — Wit T Wirr,; — Wiy >+S ( Bi+1,j+1+Bi,j+1+Bi+1,j+Bi,j )

2At
(Bi+1,j+1 + Bi,j+1) - (Bi+1,j + Bi,j)

Hd

_ 1 (
" Re 2Ay
+ mHa’ ( Uit T Ui Uerr,i T Uiy )_i
(1+m?) 4 Re

i R ( Whpist,je1 T Woi 1T Wpirr,; — Wi \)
Re : 4 /

) (1+m?)

< Witnj+1 T Wejr1+ W + Wiy
4

Wirj+1F Wi T Wi+ wey
4

G < Upir1 41— Upi b1 T Upivr,i— Upij ) :< Uiri it Uit Uen s — ) _( Upirr, i1t Upiir t Upirrs t Upis >

2A¢ 4

4

G < Wpirn,i01— Wps et T Woirr; — Upiys ) =< Ut T Ui+ Uit Uij ) _ ( Upir 1,41+ Upi i1+ Upier,i t Upiy >

2At 4

4

( Tinmi— Tignt Tins— Ty >+S ( Hipinn+ Hign+ Hes+ His )

2A¢t
1 < (Hiv st Hipn) ~ (Hur+ Hip)
RePr 2AyRePr

)5

HdEc

4
< At ApmtAmit Ay >2

4

EQ Bi+l,j+1+Bi,j+l+Bi+l,j+Bi,j 2 .
+ Re < 4 ) +

Re(1+72)
2R

< Uirt, 1 T Ui+ Ui, + iy \2
4

‘ HAEc Wirtje1 T Wi+ Werr,; + wiy
TRe (14 n?) < 4 >+
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4

( Toirvinn™ Dot Toivri— Thig )= ~L, < Toirrjer T Tpm‘i + Toivr— Tous ) +L, ( Tt Ti,j+‘i + Tyt Ty )

2At



574 Hazem A. Attia

Equations (20)-(23) are solved first for the ve-
locity of fluid and particle phases. Then, values of
the velocity components are substituted in the
right-hand side of Egs. (24) which is solved nu-
merically together with equation (25) under the
initial and boundary conditions (19) to obtain
the temperature distributions for the fluid and
particle phases. Computations have been made
for C=-3, a=1, Re=1, R=0.5; G=0.8, L,=
0.7, Pr=1, and E;=0.2. Grid-independence stu-
dies show that the computational domain 0<
t<oco and —1<y<1 can be divided into inter-
vals with step sizes Af=0.0001 and Ay=0.005
for time and space respectively. Smaller step sizes
do not show any significant change in the results.
In should be pointed out that the results obtained
here are reduced to those obtained in (Megahed
et al., 1988 ; Aboul-Hassan et al., 1991) when the
Hall parameter m=0. This ensures the accuracy
and correctness of the solutions

5. Results and Discussion

Figures 1-3 present, respectively, the profiles of
the velocity components #, #p, w and up wp and
temperatures 7 and 7} for various values of time
t starting from £=0 up till the steady state. The
figures are plotted for Ha=1, m=3 and S=1.
Comparing Figs. 1(a), 2(a) and 3(a) with 1(b),
2(b) and 3(b), respectively, shows that the ve-
locity components and temperature of the Tluid
phase reach the steady state faster than that of the
particle phase. This is because the fluid velocity is
the source for the dust particles’ velocity. It is
observed that the velocity components z and w
and temperature 7 of the fluid phase increase
with time for small values of time and then de-
crease as time develops. For some times they
exceed their steady state values and then go down
towards steady state. This can be explained as, the
velocity # increases from its zero rest value which
increases the driving force of w and then, in-
creases w with time. The increase in w increases
the resistive force on # and, in turn, decreases #
and consequently w. The increase and decrease in
u and w are expected to cause, respectively, cor-
responding increase and decrease in viscous and

Joule dissipations and, in turn, in temperature 7.

j-—-o——t=0.5 g =1 e t=3 1

—+—t=05 —5—t=1 ——1=3 |
(b)

Fig. 1 Time variation of the profile of: (a) % and
(b) up. (Ha=1, m=3, and S==1)

04 -
03 -

2 0.2 |
0.1
o
4 05 0.5 1
i_'._t=o.5 o t=1 —o—t=3 |
(a)
0.3 - e e -

——t=0.5 —o—t=1 —a—1=3 |

(b)
Fig. 2 Time variation of the profile of: (a) w and
(b) wyp. (Ha=1, m=3, and S=1)
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}—-—0—t=0.5 et ep—t=3

(b)
Fig. 3 Time variation of the profile of : (a) T and
(b) Tp. (Ha=1, m=3, and S=1)

Figures 4-6 show the time evolution of the
velocity components and temperature at the centre
of the channel (y=0), respectively, for the fluid
and particle phases for various values of the Hall
parameter m and for Ha=1 and $=0. It is clear
from Figs. 4(a) and 4(b) that increasing the para-
meter m increases # and up. This is because
the effective conductivity (¢/(1+ %)) decreases
with increasing s which reduces the magnetic
damping force on # and consequently z and u,
increase. In Figs. 5(a) and 5(b), the velocity
components w and wp increases with increasing
m slightly (m=0 to 1), since increasing m in-
creases the driving force term (mHa?u/(1+m))
in Eq. (13) which pumps the flow in the z-direc-
tion. However, increasing » more decreases the
effective conductivity that results in a reduced
driving force and then, decreases w and conse-
quently, decreases wp. Figures 6(a) and 6(b)
indicate that increasing m decreases 7 and T,
slightly for all values of {. This can be attributed
to the fact that an increase in z decreases the
Joule dissipation which is proportional to (1/
(14+m%). In general, the effect of m on the

H
|

| 0 AP m=3i

‘ I——o—-m;O —a-—m..—.j —a——m=3i

(b)
Fig. 4 Effect of the parameter m on the time varia-
tion of: (a) # at y=0 and (b) u, at y=0.
(Ha=1 and S=0)

wtpm M0 e M=T e M=3

(b)

Fig. 5 Effect of the parameter m on the time varia-

tion of : {(a) w at y=0 and (b) wp at y=0.
(Ha=1 and S=0)
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(b)
Fig. 6 Effect of the parameter m on the time varia-
tion of: (a) T at y=0 and (b) T, at y=0.
(Ha=1 and $=0)

temperature T can be neglected especially for
higher values of £ where the velocity components
u and w become small and consequently, the
viscous and Joule dissipations are neglected.
Figures 7-9 show the time evolution of the
velocity components and temperature at the centre
of the channel (y=0), respectively, for the fluid
and particle phases for various values of the
Hartmann number Hg and for m=3 and S=0.
Figures 7(a) and 7(b) indicate that increasing
Ha decreases u and up as a result of increasing
damping force on u. Figures 8(a) and 8(b) en-
sure that increasing Ha increases w and wp since
it increases the driving force on w. However,
increasing Ha more increases w at small £ but
decreases it at large f. This can be attributed to
the fact that large Ha decreases the main velocity
u, which increases with time, and reduces the
driving force on w which results in decreasing w
at large ¢. Figures 9(a) and 9(b) show that the
increasing Ha increases T and T} slightly as a
result of increasing the Joule dissipations. How-
ever, for higher Ha, the effect of Ha on T and

(a)

1 ——Ha=1 —o—Ha=2 —p—Ha=3 1

(b)
Fig. 7 Effect of the parameter m on the time varia-
tion of: (a) x at y=0 and (b) up at y=0.
(m=3 and S=0)

| —Ha=1 —s—Ha=2 —a—Ha=3 }

(b)

Fig. 8 Effect of the parameter s on the time varia-

tion of: (a) w at y=0 and (b) wp at y=0.
(m=3 and S=0)



Hall Effect on Couette Flow with Heat Transfer of a Dusty Conducting Fluid Between Parallel Porous --- 577

| ——Ha=1 —8—Ha=2 ——Ha=3 |

(b)
Fig. 9 Effect of the parameter m on the time varia-
tion of: (a) T at y=0 and (b) 7 at y=0.
(m=3 and S=0)

T, depends on time. For small ¢, increasing Ha
increases T due to increasing the Joule dissipa-
tion. But, for large f, increasing Ha, decreases
T as a result of decreasing the velocities # and
w and consequently decreases the viscous and
Joule dissipations. It should be mentioned that,
the effect of Ha on the temperature 7 can be
neglected especially for higher values of f where
the velocity components % and w become small
and consequently, the viscous and Joule dissi-
pations are neglected.

Figures 10-12 present the time evolution of the
velocity components and temperature at the cen-
tre of the channel (y=0), respectively, for the
fluid and particle phases for various values of the
suction parameter S and for Ha=1 and m=23.
Figures 10(a), 10(b), 11(a)}, and 11(b) show that
increasing the suction decreases #%, w, #p and wp
and their steady state times due to the convection
of the fluid from regions in the lower half to the
centre which has higher fluid speed. The effect
of suction on the velocity components can be
neglected for very small time, but becomes more

| —0—5=0 —8—8=1 —— s=2|
(b)
Fig. 10 Effect of the parameter » on the time varia-
tion of : (a) « at y=0 and (b) u, at y=0.
(m=3 and Ha=1)

04
03
3 02
0.1

it $=0 —8— S=1 —A—-S=2

(b)
Fig. 11 Effect of the parameter s on the time varia-
tion of : (a) w at y=0 and (b) w), at y=0.

(m=3 and Ha=1)
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T
O - N W s

t

(b)

Fig. 12 Effect of the parameter # on the time varia-
tion of : (a) T at y=0and (b) T, at y=0.
(m=3 and Ha=1)

pronounced as time develops. Figures 12(a) and
12(b) show that increasing S decreases the tem-
peratures 1T and 7, at the centre of the channel.
This is due to the influence of convection in
pumping the fluid from the cold lower half to-
wards the centre of the channel.

5. Conclusions

The unsteady Couette flow with heat transfer
of a dusty conducting fluid under the influence
of an applied uniform magnetic field has been
studied, considering the Hall effect in the presence
of uniform suction and injection and an expon-
ential decaying pressure gradient. Introducing the
Hall term gives rise to velocity components w and
wp in the z-direction for the fluid and particle
phases and it affects the main velocities % and u,
in the x-direction. The effect of the magnetic
field, the Hall parameter, and the suction and
injection velocity on the velocity and tempera-
ture distributions for both the fluid and particle
phases has been investigated. The main two com-

ponents of velocity of the fluid and dust particles
u and up, respectively, were found to increase
with increase in the Hall parameter #. However,
the other two components of velocity w and w;
which result due to the Hall effect increase with
the Hall parameter s for small m and decrease
with m for large values of m. It was found also
that the effect of large magnetic field on the
velocity components w and w, depends on time.
In general, the effect of the magnetic filed or
the Hall parameter on the temperature both fluid
and particle phases can be neglected especially for
higher values of time.

References

Aboul-Hassan, A. L., Sharaf El-Din, H. and
Megahed, A. A., 1991, “Temperature due to the
Motion of One of Them,” First International Con-
ference of Engineering Mathematics and Physics,
Cairo, pp. 723.

Aboul-Hassan, A.L. and Attia, H. A., 2002,
“Hydromagnetic Flow of a Dusty Fluid in a
Rectangular Channel with Hall Current and Heat
Transfer,” Can. J. Phys., Vol. 80, No. 5, pp. 579~
589.

Ames, W.F., 1977, Numerical Solutions of
Partial Differential Equations, Second Ed., Aca-
demic Press, New York.

Attia, H. A., 1998, “Hall Current Effects on the
Velocity and Temperature Fields of an Unsteady
Hartmann Flow,” Can. J. Phys., Vol. 76, No. 9,
pp- 739~ 746.

Attia, H. A., 2002, “Transient Hartmann Flow
with Heat Transfer Consideration the Ion Slip,”
Physica Scripta, Vol. 66, No. 6, pp. 470~475.

Attia, H. A., 2005, “The Effect of Suction and
Injection on Unsteady Flow of a Dusty Conduc-
ting Fluid in Rectangular Channel,” Journal of
Mechanical Science and Technology, Vol. 19, No.
S, pp. 1148~1157.

Borkakotia, K. and Bharali, A., 1983, “Hydro-
magnetic Flow and Heat Transfer between Two
Horizontal Plates, the Lower Plate being a Stret-
ching Sheet,” Quarterly of Applied Mathematics,
pp. 461.

Chamkha, A. J., 2000, “Unsteady Laminar Hy-



Hall Effect on Couette Flow with Heat Transfer of a Dusty Conducting Fluid Between Parallel Porous --- 579

dromagnetic Fluid-Particle Flow and Heat Trans-
fer in Channels and Circular Pipes,” Internation-
al J. of Heat and Fluid Flow, Vol. 21, pp. 740~
746.

Crammer and Pai, 1973, Magnetofluid Dynam-
ics for Engineer and Scientists, McGraw-Hill,
1973.

Dixit, L. A., 1980, “Unsteady Flow of a Dusty
Viscous Fluid Through Rectangular Ducts,”
Indian Journal of Theoretical Physics, Vol. 28,
No. 2, pp. 129.

Ghosh, A. K. and Mitra, D. K., 1984, “Flow of
a Dusty Fluid Through Horizontal Pipes,” Rev.
Roum. Phys., Vol. 29, No. 631.

Gupta, R. K. and Gupta, S. C., 1976, “Flow
of a Dusty Gas Through a Channel with Arbitra-
ry Time Varying Pressure Gradient,” Journal
of Applied Mathematics and Physics, Vol. 27,
pp. 119.

Lohrabi, J., 1980, “Investigation of Magneto-
hydrodynamic Heat Transfer in Two-Phase
Flow,” Ph. D. Thesis, Tennessee Technological
University, P.1..

Megahed, A. A., Aboul-Hassan, A.L. and
Sharaf EI-Din, H., 1988, “Effect of Joule and
Viscous Dissipation on Temperature Distribu-
tions Through Electrically Conducting Dusty
Fluid,” Fifth Miami International Symposium on
Multi-Phase Transport and Particulate Pheno-
mena ; Miami Beach, Florida, USA, Vol. 3, pp. L11.

Mitra, P. and Bhattacharyya, P., 1981, “Un-

steady Hydromagnetic Laminar Flow of a Con-
ducting Dusty Fluid between Two Parallel Plates
Started Impulsively from Rest,” Acta Mechanica,
Vol. 39, pp. 171.

Prasad, V.R. and Ramacharyulu, N.C. P,
1979, “Unsteady Flow of a Dusty Incompressible
Fluid between Two Parallel Plates under an
Impulsive Pressure Gradient,” Def. Sci. Journal,
Vol. 30, pp. 125.

Saffman, P. G., 1962, “On the Stability of a
Laminar Flow of a Dusty Gas,” Journal of Fluid
Mechanics, Vol. 13, pp. 120.

Schlichting, H., 1968, Boundary Layer Theory,
McGraw-Hill.

Singh, K.K., 1976, “Unsteady Flow of a
Conducting Dusty fluid through a Rectangular
Channel with Time Dependent Pressure Gradi-
ent,” Indian Journal of Pure and Applied Mathe-
matics, Vol. 8, No. 9, pp. 1124.

Soundalgekar, V.M., Vighnesam, N.V. and
Takhar, H. S., 1979, “Hall and Lon-Slip Effects in
MHD Couette Flow with Heat Transfer,” IEEF
Transactions on Plasma Science, Vol. PS-7, No.
3, pp- 178~182.

Soundalgekar, V. M. and Uplekar, A. G., 1986,
“Hall Effects in MHD Couette Flow with Heat
Transfer,” IEEE Transactions on Plasma Science,
Vol. PS-14, No. 5, pp. 579~583.

Sutton, G. W. and Sherman, A., 1965, Engi-
neering Magnetohydrodynamics, McGraw-Hill,
1965.



