• Title/Summary/Keyword: Fluid simulation

Search Result 2,946, Processing Time 0.027 seconds

FRACTIONAL STEP METHOD COMBINED WITH VOLUME-OF-FLUID METHOD FOR EFFICIENT SIMULATION OF UNSTEADY MULTIPHASE FLOW (비정상 다상유동의 효율적 수치모사를 위한 VOF가 적용된 Fractional Step 기법)

  • Lee, Kyong-Jun;Yang, Kyung-Soo;Kang, Chang-Woo
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.99-108
    • /
    • 2010
  • Fractional Step Methods(FSM) are popular in simulation of unsteady incompressible flow. In this study, we demonstrate that FSM, combined with a Volume-Of-Fluid method, can be further applied to simulation of multiphase flow. The interface between the fluids is constructed by the effective least squares volume-of-fluid interface reconstruction algorithm and advected by the velocity using the operator split advection algorithm. To verify our numerical methodology, our results are compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. The present FSM sheds light on accurate simulation of turbulent multiphase flow which is found in many engineering applications.

Realtime Fluid Simulation and Rendering Using Billboard method on Mobile Environment (모바일 환경에서의 빌보드 기법을 통한 실시간 유체 시뮬레이션 렌더링)

  • Woo, Sang-Hyuk;Cho, Mirina;Park, Dong-Gyu
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.264-268
    • /
    • 2006
  • This paper presents a fire and smoke animation system using stable fluid animation techniques. Stable and fast fluid simulation methods are developed in PC and console games, but fluid simulation and interactive fluid models still have many problems. We studied and implemented physics-based models for fluids like fire and smoke effects using mobile 3D system. The mobile platform of our system is WIPI, which are the standard mobile platform in Korea also we adopted NF3D API for our 3D programming API.

  • PDF

A Basic Study on the Performance CFD simulation of Road Snow-melting system by Ground Source Heat Pump (지열원 히트펌프를 이용한 도로융설시스템의 CFD 성능예측에 관한 기초연구)

  • Choi, Duk-In;Kim, Joong-Hun;Kim, Jin-Ho;Hwang, Kwang-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.2
    • /
    • pp.23-28
    • /
    • 2010
  • Fluent ver.6.3 is used as CFD(Computational Fluid Dynamics) simulator to predict the performance of snow-melting system by geothermal pipes energy. As the results of this simulation, it is clearly shown that $50^{\circ}C$ of working fluid in to geothermal evaluated as more effect comparing to $45^{\circ}C$ of working fluid. The Surface temperature is come to $5^{\circ}C$ at 1m/s speed and $50^{\circ}C$ temperature of the working fluid.

ALE-Based FSI Simulation of Solid Propellant Rocket Interior (ALE 기반의 고체 로켓 내부 유체-구조 연계 해석)

  • Han, Sang-Ho;Choi, H.S.;Min, D.H.;Kim, C.;Hwang, Chan-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.510-513
    • /
    • 2008
  • The traditional computational fluid or structure dynamics analysis approaches have contributed to solve many delicate engineering problems. But for the most of recent engineering problems which are influenced by fluid-structure interaction effect strongly, traditional individual approaches have limited analysis abilities for the exact simulation. Owing to above-mentioned reason, nowadays fluid-structure interaction analysis has become a matter of concern and interest. FSI analysis require several unprecedented techniques for the combining individual analysis tool into integrated analysis tool. The Arbitrary Lagrangian-Eulerian(ALE, in short) method is the new description of continum motion,which combines the advantages of the classical kinematical descriptions, i.e. Lagrangian and Eulerian description, while minimizing their respective drawbacks. In this paper, the ALE description is adapted to simulate fluid-structure interaction problems. An automatic re-mesh algorithm and a fluid-structure coupling process are included to analyze the interaction and moving motion during the 2-D axisymmetric solid rocket interior FSI phenomena simulation.

  • PDF

Numerical Simulation for an Air-Solid Two-Phase Flow in a Vertical Pipe (기체 흐름에 고체입자가 섞인 파이프 내의 이상유동에 대한 수치 해석)

  • Pak S. I.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41-46
    • /
    • 2002
  • A numerical simulation was made to determine the motion of particles in the fluid. The simulation is based on the Eulerian-Lagrangian method. The fluid motion was solved using a PISO-based finite-element method and a $\kappa-\epsilon$ model of turbulence. In the Lagrangian method for the solid phase, the trajectories of particles are calculated by integrating the equations of motion of a single Particle, and the collision between particles are taken into account. The influence of particles on the fluid phase is taken into account by introducing source terms in the Eulerian equations govering the fluid flow. It is known as the particle-source-in-cell (PSIC) method. Also, the turbulent effect in the particles and fluid notion is considered. The numerical results were compared with the experiment for a two-phase flow in a vertical pipe.

  • PDF

VIV simulation of riser-conductor systems including nonlinear soil-structure interactions

  • Ye, Maokun;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.241-259
    • /
    • 2019
  • This paper presents a fully three-dimensional numerical approach for analyzing deepwater drilling riser-conductor system vortex-induced vibrations (VIV) including nonlinear soil-structure interactions (SSI). The drilling riser-conductor system is modeled as a tensioned beam with linearly distributed tension and is solved by a fully implicit discretization scheme. The fluid field around the riser-conductor system is obtained by Finite-Analytic Navier-Stokes (FANS) code, which numerically solves the unsteady Navier-Stokes equations. The SSI is considered by modeling the lateral soil resistance force according to nonlinear p-y curves. Overset grid method is adopted to mesh the fluid domain. A partitioned fluid-structure interaction (FSI) method is achieved by communication between the fluid solver and riser motion solver. A riser-conductor system VIV simulation without SSI is firstly presented and served as a benchmark case for the subsequent simulations. Two SSI models based on a nonlinear p-y curve are then applied to the VIV simulations. Also, the effects of two key soil properties on the VIV simulations of riser-conductor systems are studied.

Numerical simulation of complex hexagonal structures to predict drop behavior under submerged and fluid flow conditions

  • Yoon, K.H.;Lee, H.S.;Oh, S.H.;Choi, C.R.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.31-44
    • /
    • 2019
  • This study simulated a control rod assembly (CRA), which is a part of reactor shutdown systems, in immersed and fluid flow conditions. The CRA was inserted into the reactor core within a predetermined time limit under normal and abnormal operating conditions, and the CRA (which consists of complex geometric shapes) drop behavior is numerically modeled for simulation. A full-scale prototype CRA drop test is established under room temperature and water-fluid conditions for verification and validation. This paper describes the details of the numerical modeling and analysis results of the several conditions. Results from the developed numerical simulation code are compared with the test results to verify the numerical model and developed computer code. The developed code is in very good agreement with the test results and this numerical analysis model and method may replace the experimental and CFD method to predict the drop behavior of CRA.

The visual Simulation of Fluid Flow with Free Surface in a Virtual Water Tank (가상수조에서 자유표면을 가진 유체흐름의 가시화시뮤레이션)

  • 김남형;김남국
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.35-40
    • /
    • 2000
  • SMAC method is, one of the numerical simulation techniques, modified from the original MAC for the time-dependent variation of fluid flows. The Navier-Stokes equation for incompressible time-dependent viscous flow is applied and, also marker particles which move with the fluid are used. Two-dimensional numerical computations of fluid flow are carried out in a virtual water tank. This paper has shown very well the movements of marker particles using SMAC method.

  • PDF

CFD simulation of vortex-induced vibration of free-standing hybrid riser

  • Cao, Yi;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.195-223
    • /
    • 2017
  • This paper presents 3D numerical simulations of a Free Standing Hybrid Riser under Vortex Induced Vibration, with prescribed motion on the top to replace the motion of the buoyancy can. The model is calculated using a fully implicit discretization scheme. The flow field around the riser is computed by solving the Navier-Stokes equations numerically. The fluid domain is discretized using the overset grid approach. Grid points in near-wall regions of riser are of high resolution, while far field flow is in relatively coarse grid. Fluid-structure interaction is accomplished by communication between fluid solver and riser motion solver. Simulation is based on previous experimental data. Two cases are studied with different current speeds, where the motion of the buoyancy can is approximated to a 'banana' shape. A fully three-dimensional CFD approach for VIV simulation for a top side moving Riser has been presented. This paper also presents a simulation of a riser connected to a platform under harmonic regular waves.