• Title/Summary/Keyword: Fluid Viscosity

Search Result 723, Processing Time 0.033 seconds

Pump Performance Analyses with High Viscous Fluids (점성이 높은 유체를 사용하는 펌프의 성능해석)

  • Kim, Dong-Joo;Roh, Hyung-Woon;Suh, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.2 s.23
    • /
    • pp.21-26
    • /
    • 2004
  • In this study the effects of fluid viscosity on the pump performances for a conventional centrifugal pump were experimentally investigated. The study aimed to compare the pump characteristics between water and viscosity fluids. In order to measure the flow rate and pressure, v-notch welt and bourdon pressure gauges were used for the codes of KS B6301 and KS B6302. The working fluids were water, aqueous sugar and glycerin solutions. The results were summarized as follows : The experimental results were summarized as follows : the pump characteristics of the total head, shaft power, and efficiency with high viscosity fluids were different from those of water. When the viscosity of the applied fluid was increased, the total head and efficiency were more decreased than those of water. The decreasing gradients of the total head and the efficiency were larger than water due to the increased disk friction losses at the duty operation point. However, the shut-off head was almost constant regardless the viscosity of applied fluids. Each efficiency curves for the sugar $20w\%$ and glycerin $20w\%$ solutions was decreased up to $15.1\%$ and $34.4\%$ than that of water, respectively.

Study of Cam and Follower Contacts with the Mixed Concepts of EHL and Boundary Lubrication (EHL과 경계 윤활의 혼합 개념에 의한 캠과 종동물의 접촉 현상에 대한 연구)

  • 장시열
    • Tribology and Lubricants
    • /
    • v.15 no.4
    • /
    • pp.343-353
    • /
    • 1999
  • The role of viscosity index improver's(Ⅶ) additives for modem engine lubrication is complex. Under the condition of atmosphere or low shear rate, the characteristics of Ⅶ added lubricant is verified and quoted frequently for mathematical model of lubricant behavior. However, recent research shows that added lubricant has the characteristics of shear thinning at high shear rate condition although it performs well enough over the whole range of working temperature. At high shear rate, they show significant decrease of apparent viscosity irrespective of temperature. Many experimental researches verify that Ⅶ added lubricant shows boundary film layer formation on the solid surface as well as shear thinning effect by its polymeric molecular characteristics. The intend of our research is to verify the effects of Ⅶ from the viewpoint of continuum mechanics, because conventional Reynolds'equation with only pressure-viscosity relation cannot fully predict the lubricant behavior under the Ⅶ added condition. In these aspects, Reynolds'equation of Newtonian fluid model lacks the reflection of real fluid behavior and there is no way to explain the non-linear characteristics of Ⅶ added lubricant. In this research, we mathematically modeled the Ⅶ added lubricant behaviors which are the characteristics of non-Newtonian fluid behavior at high shear rate and boundary film formation on the solid surface. The consideration of elastic deformation in the contact region is also included in our computation and finally the converged film pressure and the film thickness with elastic deformation are obtained. The results are compared with those of Newtonian fluid model.

Physical Modeling of Aluminum-Foam Generation (알루미늄 발포공정의 물리적 모델링)

  • Oak S. M.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.297-300
    • /
    • 2001
  • Physical modeling technique is applied to investigate foam generation in molten aluminum. By using room temperature water with specially designed equipment, the effects of stirrer type, fluid viscosity(glycerine added to water) and stirring velocity on foam generation behaviors are intensively analysed The distribution and size of bubbles varied with each process parameters but the most important parameters are stirring velocity and fluid viscosity. The results obtained from physical simulation have been confirmed by actual aluminum foam generation experiment at various process variables.

  • PDF

Study on the Highly Viscous Fluid Ejection Pressure of Magnetostrictive Inkjet Head (자기변형 잉크젯헤드의 고점도 유체 토출 요구 압력에 관한 연구)

  • Oh, Ock Kyun;Park, Young-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.369-375
    • /
    • 2015
  • This paper presents ejection of high viscosity fluids with magnetostrictive inkjet printhead(Magjet), which is not common with any other printhead. The MagJet uses a magnetostrictive material, Terfenol-D rod with 10-mm in diameter and 50-mm in length, as an actuation mechanism. It has been known that high viscosity is often an obstacle in ejecting small and mono-disperse droplets. We calculated required pressure with fluidic inertia (Bernoulli equation) and viscous loss (Hagen Poiseuille equation). The required pressure for ejecting a droplet is 1300kPa. The generated force and displacement with Terfenol-D rod are estimated to be 480N (2600kPa) and $28{\mu}m$, respectively. It was enough that Magjet eject high viscosity fluid (Max 1000cP). The experiments are performed to eject the high viscosity fluid with Magjet. The ejection of high viscosity fluids is successful with the aid of Terfenol-D's high performance.

Patient-Specific Computational Fluid Dynamics in Ruptured Posterior Communicating Aneurysms Using Measured Non-Newtonian Viscosity : A Preliminary Study

  • Lee, Ui Yun;Jung, Jinmu;Kwak, Hyo Sung;Lee, Dong Hwan;Chung, Gyung Ho;Park, Jung Soo;Koh, Eun Jeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.2
    • /
    • pp.183-192
    • /
    • 2019
  • Objective : The objective of this study was to analyze patient-specific blood flow in ruptured aneurysms using obtained non-Newtonian viscosity and to observe associated hemodynamic features and morphological effects. Methods : Five patients with acute subarachnoid hemorrhage caused by ruptured posterior communicating artery aneurysms were included in the study. Patients' blood samples were measured immediately after enrollment. Computational fluid dynamics (CFD) was conducted to evaluate viscosity distributions and wall shear stress (WSS) distributions using a patient-specific geometric model and shear-thinning viscosity properties. Results : Substantial viscosity change was found at the dome of the aneurysms studied when applying non-Newtonian blood viscosity measured at peak-systole and end-diastole. The maximal WSS of the non-Newtonian model on an aneurysm at peak-systole was approximately 16% lower compared to Newtonian fluid, and most of the hemodynamic features of Newtonian flow at the aneurysms were higher, except for minimal WSS value. However, the differences between the Newtonian and non-Newtonian flow were not statistically significant. Rupture point of an aneurysm showed low WSS regardless of Newtonian or non-Newtonian CFD analyses. Conclusion : By using measured non-Newtonian viscosity and geometry on patient-specific CFD analysis, morphologic differences in hemodynamic features, such as changes in whole blood viscosity and WSS, were observed. Therefore, measured non-Newtonian viscosity might be possibly useful to obtain patient-specific hemodynamic and morphologic result.

Effect of Fluid Viscosity Changes on Pump Performances (유체의 점도변화가 펌프성능에 미치는 영향)

  • Cho, Mintae;Suh, Sangho;Kim, Dongjoo;Sung, Sunkyung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.61-64
    • /
    • 2000
  • In order to analyse the effect of the fluid viscosity changes on the centrifugal pump, the computer simulation method and the performance correction chart are used. The centrifugal pump is designed using the traditional method, and the 3D computational grid is generated for the impeller and casing. Working fluids are water, high viscous oil and muddy water. The viscosity of muddy water is measured by the unsteady capillary tube viscometer. The pump performances are predicted well through the computer simulation. The performance curves of head and efficiency for oil and muddy water are decreased. The torques of oil and muddy water, which is calculated by performance correction chart are predicted at a lower value than the computer simulation.

  • PDF

Numerical Analysis on Heat Transfer of Viscoelastic Fluid including Buoyancy Effect (부력의 영향을 포함한 점탄성 유체의 열전달에 관한 수치해석)

  • Sohn, Chang-Hyun;Ahn, Seong-Tae;Jang, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.495-503
    • /
    • 2000
  • The present numerical study investigates flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effect of temperature-dependent viscosity, buoyancy and secondary flow caused by second normal stress difference are all considered. The Reiner-Rivlin model is used as a viscoelastic fluid model to simulate the secondary flow and temperature-dependent viscosity model is adopted. Three types of thermal boundary conditions involving different combinations of heated walls and adiabatic walls are considered in this study. Calculated Nusselt numbers are in good agreement with experimental results in both the thermal developing and thermally developed regions. The heat transfer enhancement can be explained by the combined viscoelasticity-driven secondary flow, buoyancy-induced secondary flow and temperature-dependent viscosity.

A Study On the Application of VHVI Base Oil - Hydraulic Fluid for Construction Equipment (VHVI 기유의 제품 적용 기술에 관한 연구 - 건설 중장비용 유압유)

  • 권완섭;문우식;윤한희;김경웅
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • This study represents the newly advanced formulation of hydraulic fluids for extended drain interval and introduces the performance results of used oil samples from various excavators. The used oil samples, in this paper, show that there is a sharp change in viscosity drop and moderate additive depletion when viscosity index of hydraulic oil is very high. For the extension of hydraulic fluid life, it is necessary to improve the stability of viscosity and oxidation. New target properties from the used oil analysis were proposed for extended life. Performance of newly developed hydraulic oil based on used oil analysis is compared with previously used one. The properties of new formulation are the viscosity index of 140 and improved thermal stability consists of VHVI base oil. Field test results showed the possibility of extension of fluid life. Additionally, for development of high performance product, new required propertied and performances were discussed.

Effect of Fluid Viscosity on Centrifugal Pump Performance (유체의 점성이 원심펌프 성능에 미치는 영향)

  • Kim, Noh-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.599-605
    • /
    • 2013
  • The characteristics of centrifugal pump performance according to fluid viscosity change were studied experimentally. A small volute pump with low specific speed was tested by changing the viscosity of an aqueous solution of sugar and glycerin, which is considered a Newtonian fluid. After finishing the test, the total head, shaft horsepower, and pump efficiency were compared with those of a water pump. The results are summarized as follows: (1) when the fluid viscosity is increased, the shut-off head shows very little change but the total head decreases gradually as the flow increases, and this makes the H-Q curve leaning rapidly, and (2) when the fluid viscosity is increased, the shaft horsepower shows very little change at the shutoff condition; however, the shaft horsepower increases more rapidly with an increase in the flow and viscosity.

Optimum Hydraulic Oil Viscosity Based on Slipper Model Simulation for Swashplate Axial Piston Pumps/Motors

  • Kazama, Toshiharu
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.84-90
    • /
    • 2021
  • Viscosity of hydraulic oils decreases due to loss reduction and efficiency increase of fluid power systems. However, low viscosity is not always appropriate due to the induction of large leakage and small lubricity. Therefore, a detailed study on the optimum viscosity of hydraulic oils is necessary. In this study, based on the thermohydrodynamic lubrication theory, numerical simulation was conducted using the slipper model of swashplate-type axial piston pumps and motors. The viscosity grades' (VG) effects of oils on power losses are mainly discussed numerically in fluid film lubrication, including changes in temperature and viscosity. The simulation results reveal that the flow rate increases and the friction torque decreases as VG decreases. The film temperature and power loss were minimised for a specific oil with a VG. The minimum conditions regarding the temperature and loss were different and closed. Under various operating conditions, the film temperature and power loss were minimised, suggesting that an optimum hydraulic oil with a specific VG could be selected for given operating conditions of pressure and speed. Otherwise, a preferable operating condition must be established to determine a specific VG oil.