• Title/Summary/Keyword: Fluid Tank

Search Result 572, Processing Time 0.027 seconds

Study of Computational Fluid Dynamics for Projection Distance Prediction of the Foam Monitor (폼모니터의 분사거리 예측을 위한 유동해석에 관한 연구)

  • Ryu, Young-Chun;Seo, Bu-Kyo;Seung, Jung-Hyun;Lee, Young-Hoon;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5939-5944
    • /
    • 2014
  • The foam monitor is equipment for extinguishing fires, particularly for oil tankers or cargo areas of the carrying vessel. This equipment is installed on the cargo tank deck. Generally, the projection distance is important for designing an extinguishment. On the other hand, the form monitors in current industry have been designed by trial and error rather than by numerical analysis method. Therefore, the shape design of the new form of monitor is needed. In this study, numerical analysis was performed to determine the projection distance prediction, and experiment results were used to make a comparison with the analysis results. The proposed method was applied to the modified form of a newly designed monitor in a company.

Experimental research on the mechanisms of condensation induced water hammer in a natural circulation system

  • Sun, Jianchuang;Deng, Jian;Ran, Xu;Cao, Xiaxin;Fan, Guangming;Ding, Ming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3635-3642
    • /
    • 2021
  • Natural circulation systems (NCSs) are extensively applied in nuclear power plants because of their simplicity and inherent safety features. For some passive natural circulation systems in floating nuclear power plants (FNPPs), the ocean is commonly used as the heat sink. Condensation induced water hammer (CIWH) events may appear as the steam directly contacts the subcooled seawater, which seriously threatens the safe operation and integrity of the NCSs. Nevertheless, the research on the formation mechanisms of CIWH is insufficient, especially in NCSs. In this paper, the characteristics of flow rate and fluid temperature are emphatically analyzed. Then the formation types of CIWH are identified by visualization method. The experimental results reveal that due to the different size and formation periods of steam slugs, the flow rate presents continuous and irregular oscillation. The fluid in the horizontal hot pipe section near the water tank is always subcooled due to the reverse flow phenomenon. Moreover, the transition from stratified flow to slug flow can cause CIWH and enhance flow instability. Three types of formation mechanisms of CIWH, including the Kelvin-Helmholtz instability, the interaction of solitary wave and interface wave, and the pressure wave induced by CIWH, are obtained by identifying 67 CIWH events.

A Study on CFD of Turbo fan and Fabrication of Turbo Fan with Honeycombs by PBF (터보 팬의 유동해석 및 허니콤 구조가 적용된 터보 팬의 PBF 3D 프린팅 제작에 관한 연구)

  • Jin, Chul-Kyu;Lee, Haesoo;Lee, Un-Gil;Woo, Jae-Hyeog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.899-908
    • /
    • 2022
  • In this study, a study was conducted to localize a large aluminum turbo fan used for tank powerpack. The turbo fan was scanned with a 3D scanner and then 3D modeling was performed. Computational fluid dynamics (CFD) were performed from the performance conditions of the fan, and structural analysis was performed using the pressure data obtained from CFD. The fan was reduced to 1/5 size by applying the geometric similarity. A 1/5 size fan has a honeycomb structure inserted into the front shroud and back shroud to reduce the weight by 5.3%. A 1/5 size fan was printed using a PBF 3D printer, and a 1/5 size fan with honeycombs was also printed. The pressure drop of 8.67 kPa and the required power of 138.19 kW, which satisfies the performance conditions of the fan, were confirmed from the results of CFD. The values of the maximum deformation amount of 0.000788 mm and the maximum effective stress of 0.241 MPa were confirmed from the structural analysis results. The fan printed by the PBF 3D printer had the same shape as the modeling, and the shape was perfect. There are no defects anywhere in appearance. However, the condition of the outer surface of the fan's back shroud is rough compared to other locations. The fan in which the honeycomb was inserted was also perfectly output, and the shape of the honeycomb was the same as the modeling.

Changes in the Hydrodynamic Characteristics of Ships During Port Maneuvers

  • Mai, Thi Loan;Vo, Anh Khoa;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • To reach a port, a ship must pass through a shallow water zone where seabed effects alter the hydrodynamics acting on the ship. This study examined the maneuvering characteristics of an autonomous surface ship at 3-DOF (Degree of freedom) motion in deep water and shallow water based on the in-port speed of 1.54 m/s. The CFD (Computational fluid dynamics) method was used as a specialized tool in naval hydrodynamics based on the RANS (Reynolds-averaged Navier-Stoke) solver for maneuvering prediction. A virtual captive model test in CFD with various constrained motions, such as static drift, circular motion, and combined circular motion with drift, was performed to determine the hydrodynamic forces and moments of the ship. In addition, a model test was performed in a square tank for a static drift test in deep water to verify the accuracy of the CFD method by comparing the hydrodynamic forces and moments. The results showed changes in hydrodynamic forces and moments in deep and shallow water, with the latter increasing dramatically in very shallow water. The velocity fields demonstrated an increasing change in velocity as water became shallower. The least-squares method was applied to obtain the hydrodynamic coefficients by distinguishing a linear and non-linear model of the hydrodynamic force models. The course stability, maneuverability, and collision avoidance ability were evaluated from the estimated hydrodynamic coefficients. The hydrodynamic characteristics showed that the course stability improved in extremely shallow water. The maneuverability was satisfied with IMO (2002) except for extremely shallow water, and collision avoidance ability was a good performance in deep and shallow water.

The Effect of Surface Tension on the Transient Free-Surface Flow near the Intersection Point (교차점 부근의 과도자유표면유동에 미치는 표면장력의 영향)

  • Lee, G.J.;Rhee, K.P.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.104-117
    • /
    • 1991
  • When a body starts to move, the flow near the intersection point between a body and a free surface changes violently and rapidly in a very short initial time interval. This flow phenomena must be investigated whenever one treats the interaction between a body and a fluid, such as the motion of a floating body, sloshing in a tank, wave maker problem, entry of a body into a fluid etc.. Until Roberts(1987), it was widely accepted that a singularity exists at the intersection point. However, he showed that the singularity does not exist if a body moves non-impulsively. In this paper, an analytical solution cosistent for the case of impulsive motion of a body is obtained by including the effect of surface tension. From the characteristics of the newly obtained solution, a critical value associated with an oscillating phenomenon is found, and further more, it is shown that the oscillating phenomenon does not appear in the region where the distance form the intersection point is less than this critical value.

  • PDF

Vibration control in high-rise buildings with tuned liquid dampers - Numerical simulation and engineering applications

  • Zijie Zhou;Zhuangning Xie;Lele Zhang
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.91-103
    • /
    • 2023
  • Tuned liquid dampers (TLDs) are increasingly being used as efficient dynamic vibration absorbers to mitigate wind-induced vibration in super high-rise buildings. However, the damping characteristics of screens and the control effectiveness of actual structures must be investigated to improve the reliability of TLDs in engineering applications. In this study, a numerical TLD model is developed using computational fluid dynamics (CFD) and a simulation method for achieving the coupled vibration of the structure and TLD is proposed. The numerical results are verified using shaking table tests, and the effects of the solidity ratio and screen position on the TLD damping ratios are investigated. The TLD control effectiveness is obtained by simulating the wind-induced vibration response of a full-scale structure-TLD system to determine the optimal screen solidity ratio. The effects of the structural frequency, damping ratio, and wind load amplitude on the TLD performance are further analyzed. The TLD damping ratio increases nonlinearly with the solidity ratio, and it increases with the screens towards the tank center and then decreases slightly owing to the hydrodynamic interaction between screens. Full-scale coupled simulations demonstrated that the optimal TLD control effectiveness was achieved when the solidity ratio was 0.46. In addition, structural frequency shifts can significantly weaken the TLD performance. The control effectiveness decreases with an increase in the structural damping ratio, and is insensitive to the wind load amplitude within a certain range, implying that the TLD has a stable damping performance over a range of wind speed variations.

Analysis of Check Valve Seal for CNG Vehicle Fuel Supply Line (CNG차량의 연료공급라인용 Check Valve Seal의 거동해석)

  • Yoo, Jae-Chan;Yeo, Kyeong-Mo;Kang, Byeong-Roo;Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.329-334
    • /
    • 2006
  • In CNG (Compressed natural gas) fuel supply line, whose main components are receptacle and check valve are used to charge high pressure gas to the tank of NGV (Natural gas vehicle). It is reported that the seal is separated occasionally form valve seat and results in blockage of gas flow. In this paper, MARC is used to investigate the reasons of seal separation and suggest design improvements. The static gas pressure distributions acting on the seal which calculated using FLUENT are considered to investigate accurate seal deformation behaviors. Deformed seal shapes are obtained for various amounts of seal interference and its location, gas pressure distributions and Young's modulus of the rubber used. The results showed that the reasons of seal separation problems are verified theoretically, and suggested examples of new design method. Therefore the present numerical methods can be applied in designing and performance analysis of rubber seals adopted in high pressure fluid machineries.

Analysis of the Effect of the Parameter on the Air Braking Response Time of Heavy duty Truck (상용 트럭의 공압 브레이크 제동 특성에 미치는 인자에 대한 연구)

  • Kim, Jin-Taek;Cho, Byoung-Soo;Baek, Byoung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • The effect of several parameters to minimize the braking response time has been investigated in this study. The experimental rigs were developed and the results of the experement compared with those of simulation obtained from the net work fluid flow system analysis code (FLOWMASTER). The braking response time and pressure loss were observed at separated braking port and found out that the response time can be reduced by considering the pipe length and environmental thermal conditions. The correlation equation was also presented to predict the pressure loss at various tank pressure.

The Analysis of Flow Circulation System for HANARO Flow Simulated Test Facility (하나로 유동모의 설비의 유체순환계통 해석)

  • Park, Yong-Chul
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.419-424
    • /
    • 2002
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality In February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulation facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The flow circulation system is composed of a circulation pump, a core flow pipe, a core bypass flow pipe and instruments. The system is to be filled with de-mineralized water and the flow should be met the design flow to simulate similar flow characteristics in the core channel of the half-core test facility to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the system. The computational flow analysis has been performed for the verification of system pressure variation through the three-dimensional analysis program with standard k-$\epsilon$ turbulence model and for the verification of the structural piping integrity through the finite element method. The results of the analysis are satisfied the design requirements and structural piping integrity of flow circulation system.

  • PDF

Blood pressure simulator using hybrid controller (합성제어기를 이용한 혈압 시뮬레이터의 구현)

  • Kim, C.H.;SaGong, G.;Nam, Gi-Gon;Jeon, R.
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.44-51
    • /
    • 2007
  • A hybridized simulator for generating blood pressure waveform is proposed to study the remedy and/or evaluation of the conventional sphygmomanometer utilizing the oscillometric method which is widely applied. The blood pressure of a flowing fluid was controlled for the blood vessel's condition caused by a rhythmical and periodical contraction/relaxation because of the special excitatory and conductive system of the heart. In this study, a hybridized controller composed of the PI feedback controller and the feedforward controller. The inverse dynamics function is proposed to operating the control valve while the pressure is applied in an oil pressure tank. The proposed hybrid simulator reproducing the blood pressure waveform in an artificial blood vessel has kept the control performance consistent over all range. Based on these results, the proposed simulators could be applied to the development and compensation of the non invasive sphygmomanometer type as well as to study the characteristics of the blood pressure and blood vessel.