• 제목/요약/키워드: Fluid System

검색결과 5,212건 처리시간 0.03초

ER 유체의 온도상승에 의한 ER 클러치의 성능변화 예측 (Estimation of Performance Variation of ER Clutch due to Temperature Increase of ER Fluid)

  • 이규한;심현해;김창호;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.151-166
    • /
    • 1997
  • ER clutch is a device using ER fluid, so called "intelligent material" and is a controlled system with electric field strength. Current problem of this device is that the temperature of ER fluid increases when ER clutch is operating and affects the performance of ER clutch. This study was undertaken to estimate this performance variation due to temperature increase of ER fluid. Analytic power transmission relationships and the temperature increase model using the rheological model of ER fluid were developed and the dynamic model of proposed ER clutch system was constructed, also. With this relationships, effects of changing geometric, kinetic parameters of ER clutch and ER fluid properties were described and performance variations due to temperature increases of ER fluid were estimated. In conclusion, compared with neglecting temperature increase effects, a performance of ER clutch was very differential. Therefore, to achieve uniform performance of ER clutch, we have to improve thermal stability of ER fluid with a view point of material development and design carefully ER clutch considering temperature increase effects with a view point of mechanical design skill.ign skill.

  • PDF

극저온 유체 화물창 방벽 내의 액체유동 및 기화 시뮬레이션 (LIQUID FLOW AND EVAPORATION SIMULATION OF CRYOGENIC FLUID IN THE WALL OF CRYOGENIC FLUID CARGO CONTAINMENT SYSTEM)

  • 박범진;이희범;이신형;배준홍;이경원;정왕조;안상준
    • 한국전산유체공학회지
    • /
    • 제14권2호
    • /
    • pp.9-18
    • /
    • 2009
  • The cargo containment system (CCS) for ships carrying cryogenic fluid consists of at least two levels of barriers and insulation layers. It is because, even though there is a small amount of leak through the primary barrier, the liquid tight secondary barrier blocks further leakage of the cryogenic fluid. However, once the secondary barrier is damaged, it is highly possible that the leaked cryogenic fluid flows through the flat joint made of glass wool and reaches the inner hull of the ship. The primary objective of the present study is to investigate the influence of the damage extent in the secondary barrier on the amount of leaked cryogenic fluid reaching the inner hull and the temperature distribution there. Simulation results using a computational fluid dynamics tool were compared with the experimental data for the leaked cryogenic fluid flow and evaporation in the secondary insulation layer. The experimental and computational results suggest that, unless there is a massive leak, the cryogenic fluid mostly evaporates in the insulation layer and does not reach the inner hull in the state of liquid.

Two-Fluid Model을 이용한 교통신호제어시스템 개선에 따른 거시적 교통류 변화 분석 (Analysis of the Macroscopic Traffic Flow Changes using the Two-Fluid Model by the Improvements of the Traffic Signal Control System)

  • 정영제;김영찬;김대호
    • 대한교통학회지
    • /
    • 제27권1호
    • /
    • pp.27-34
    • /
    • 2009
  • 도로교통망의 시스템변화에 대한 효과분석의 일환으로 1979년 Herman이 제시한 Two-Fluid Model을 적용하여 거시적인 교통류 변화특성을 분석하였으며, 이를 통해 도로시설의 운영개선 효과를 정량적으로 확인하였다. 본 연구에서는 일반국도 3호선 의정부 전체 구간의 약 8km, 총 31개 신호교차로를 분석 대상으로 하며, TSIS CORSIM 및 Run Time Extension을 이용한 미시적 시뮬레이션 분석으로 현황 및 개선 대안에 대한 개별차량의 주행정보를 추출하였다. Two-Fluid Model의 파라메타 산출결과 현황 대비 신호제어시스템 개선 시 네트워크의 서비스 질을 의미하는 단위거리 당 평균최소통행시간(Tm)은 약 35% 감소하였으며, 네트워크 수요증가에 대한 저항성을 의미하는 파라메타 n은 약 28%의 향상된 결과를 나타내었다. 국도 축을 대상으로 하는 시뮬레이션 기반의 자료 수집으로 인해 제한된 연구결과이나 Two-Fluid Model이 신호 최적화 및 연동형 반감응제어의 적용 등 신호제어시스템 개선에 대한 우수한 거시적 효과평가 지표로 활용되어 질 수 있음을 확인하였다.

Study on bubble detection sensor for safe sap and blood injection

  • Yun, Young Gi;Lee, Hoo Young;Park, Koo Rack
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권9호
    • /
    • pp.149-154
    • /
    • 2017
  • The infusion of fluid and blood is necessary in the ward, operating room, recovery room, neonatal room, etc. for nutrition and blood supply to the patient, but air bubbles generated during infusion of fluid and blood circulate along the artery or vein. Serious illnesses occur and there is also a risk of death. In this paper, we propose a medical bubble detection system, a bubble detection system, a bubble detection alarm system, and a communication method in order to develop a safer fluid and blood injection system in the existing system, which is detected by a medical staff monitoring system or an ultrasonic bubble detection sensor In this study, infrared rays are transmitted to a tube through a tube for injecting fluid or blood into a patient, infrared rays transmitted by an infrared ray emitting section are received, and the amount of light is measured in real time. Based on the data, we study how to detect and analyze the presence of bubbles in fluid and blood.

유체 토크 컨버터를 이용한 정회전 정출력 풍력발전시스템 연구 및 개발 (A Study and Development of the Wind Turbine System for Rated Revolutions and Rated Output using Fluid Torque Converter)

  • 이인열;이강일;심충무;최대규;임재규
    • 조명전기설비학회논문지
    • /
    • 제26권11호
    • /
    • pp.40-47
    • /
    • 2012
  • Most of existing wind turbine system is used with geared type; however, this type has lots of problems which are noisy, weight, maintenance and so on. In this paper, wind turbine system with fluid torque converter applied to solve these problems. In case of the proposed wind turbine system, it is possible to transmit torque to adaptable distance. So various sets including generator, inverter and auxiliary motor move from the nacelle to the ground. As a result, Total weight in Nacelle can be decreased. however, the efficiency can be decreased with fluid torque system. We also applied auxiliary motor to fluid torque system. So, we also realized rated revolutions and rated output windturbine and could get considerable good data.

초음속 페탈 이젝터 시스템에 관한 실험적 연구 (An Experimental Study on the Supersonic Petal Ejector System)

  • 이준희;김중배;최보규;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2145-2150
    • /
    • 2003
  • Ejector system is one of fluid machinery which can entrain the fluid in low pressure part and transport it to the higher pressure part. The ejector system has been widely used for the purpose of obtaining high-vacuum state, fluid transport, thrust augmentation, etc. It can transport a large capacity of fluid with relatively small device of no any moving parts, and thus seldom causes mechanical troubles. However, the conventional ejector system has been pointed out that its overall efficiency is quite low compared with other fluid machinery since it is derived by only the pure shear stresses. In the present study, 4, 6, and 8 lobed petal nozzles with a design Mach number of 1.7 are adopted as a primary nozzle to improve the ejector performance, and are compared with a conventional circular nozzle. The static pressures along the diffuser wall are measured to qualify the flow field inside the supersonic petal ejector system.

  • PDF

e-AIRS 환경을 활용한 웹기반의 유체역학 교육 (Web-based Fluid Dynamics Education using e-AIRS System)

  • 김진호;이준석;고수흠;김종암;김윤희;문종배;조금원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.212-215
    • /
    • 2008
  • e-AIRS, an abbreviation of 'e-Science Aerospace Integrated Research System,' is a virtual organization supporting CFD(computational fluid dynamics) simulations, remote experimental service, and collaborative and integrative study between computation and experiment. e-AIRS works on the e-Science environment and research process is accomplished through the web portal. By the system development since 2005, a stable education system with the full support on fluid dynamics is successfully established and utilized to various fluid dynamic lectures in universities. By using e-AIRS system during a lecture, students can conduct the full CFD simulation process on the web and inspect the wind tunnel experiment via Access Grid. This kind of interactive lecture makes students to have a deeper understanding on the physics of fluid, as well as the characteristics of numerical techniques. The current paper will describe system components of e-AIRS and its utilization on education.

  • PDF

A NOVEL MERHOO AND PROCEDURE FOR ON-LINE MEASUREMENT OF FLUID PROPERTIES FOR CONTROL AND OPTIMIZATION

  • Kaya, Azmi;Keyes, Marion-A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.844-847
    • /
    • 1989
  • This work describes an on-line method and procedure for calculating the fluid properties in real time while system is in operation. The method utilizes function blocks of distributed control systems. Thermodynamic relations of fluid from tables along with a fluid property formula are imbedded into the proposed signal processing block. Once the pressure and temperature measurements are entered the system provides other properties.

  • PDF

CG 제작을 위한 유체 애니메이션 (Liquid Animation for CG Production)

  • 차득현;김장희;민정기;임인성;강병권
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.51-54
    • /
    • 2003
  • Fluid is an effective element in computer animation. Recently, the techniques from CFD have been actively applied to CG production. In this paper, we describe our fluid animation system which implements a variety of established simulation and rendering methods. We also explain our new techniques such as chemical reaction and hardware-assisted fluid animation that are being developed to enhance the features of our software system.

  • PDF

유체유동 회전 외팔 파이프의 동특성 및 안정성 해석 (Dynamic Characteristics and Stability Analysis of a Rotating Cantilever Pipe Conveying Fluid)

  • 김동진;윤한익;손인수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1185-1190
    • /
    • 2007
  • In this paper the vibration system is consisted of a rotating cantilever pipe conveying fluid. The equation of motion is derived by using the Lagrange's equation. Also, the equation of motion is derived applying a modeling method that employs hybrid deformation variables. Generally, the system of pipe conveying fluid becomes unstable by flutter. So, we studied about the influences of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method. The influences of mass ratio, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified. The critical fluid velocity$(u_{cr})$ is proportional to the angular velocity of the cantilever pipe. In this paper Flutter(instability) always occur in the second mode of the system.

  • PDF