• Title/Summary/Keyword: Fluid Force Reduction

Search Result 97, Processing Time 0.02 seconds

Effects of the Balance Hole Diameter of an Automotive Closed Type Water Pump on Hydraulic Performance and Axial Force (자동차 워터펌프 밸런스 홀 직경이 수력성능 및 축추력에 미치는 영향)

  • Lee, Gee-Soo;Heo, Hyung-Seok;Kim, Hyun-Chul;Oh, Chang-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.111-117
    • /
    • 2008
  • The aim of this paper was to investigate the fluid dynamic behavior of the automotive closed type water pump with balance hole in order to evaluate and justify its overall hydraulic performance and, in particular to analyze the effects of the balance hole on the reduction of hydraulic flow force of it. The analysis has been peformed by applying the commercial computational fluid dynamics (CFD) code, Fluent, to the solution of the 3-D turbulent flow fields of automotive closed type water pump. The reliability of the employed analysis was demonstrated by the comparison between numerical result and experimental data. Although, hydraulic head of the closed type water pump with 3mm diameter of balance hole decreased by 1.1%, axial flow force was effectively reduced by 13.3%, comparison of it with no hole at design point.

A Study on the Sloshing Reduction of a Cargo Fuel Tank with Baffle (배플을 적용한 Cargo용 연료탱크 내부의 슬로싱 저감 연구)

  • Yoon, Bo-Hyun;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1074-1083
    • /
    • 2010
  • Recently sloshing that fluid in fuel tank is undulating by the external force during motion of automobile, ship and aircraft is greatly affecting by damaging the inside of structure. It's most important to precisely analyze the behavior of fluid by computational fluid dynamics for minimizing the effect of sloshing for the loaded fuel. This study characterized volume of fluid and pressure according to the length and number of vertical baffle and horizontal baffle in fuel tank for Kia Frontier cargo and analyzed for reduction of sloshing during driving on corner and hill by using ADINA-CFD. As a result of analysis, the optimum length for sloshing reduction shows 0.19 m for vertical baffle and 0.08 m for horizontal baffle. And it shows that vertical baffle is better for the reduction effect of sloshing during driving on corners, on the other hand, horizontal baffle is effective and stable during driving on hills.

Effect of corner modifications on 'Y' plan shaped tall building under wind load

  • Sanyal, Prasenjit;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.245-260
    • /
    • 2020
  • Wind load and responses are the major factors which govern the design norms of tall buildings. Corner modification is one of the most commonly used minor shape modification measure which significantly reduces the wind load and responses. This study presents a comparison of wind load and pressure distribution on different corner modified (chamfered and rounded) Y plan shaped buildings. The numerical study is done by ANSYS CFX. Two turbulence models, k-epsilon and Shear Stress Transport (SST), are used in the simulation of the building and the data are compared with the previous experimental results in a similar flow condition. The variation of the flow patterns, distribution of pressure over the surfaces, force and moment coefficients are evaluated and the results are represented graphically to understand the extent of nonconformities due to corner modifications. Rounded corner shape is proving out to be more efficient in comparing to chamfered corner for wind load reduction. The maximum reduction in the maximum force and moment coefficient is about 21.1% and 19.2% for 50% rounded corner cut.

A preliminary study on the surface finishing of a hard disk slider using magnetorheological (MR) fluid (자기유변유체를 이용한 하드디스크 슬라이더의 표면연마를 위한 기초연구)

  • Jung, B.S.;Jang, K..I.;Min, B..K.;Lee, S.J.;Seok, J.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.66-72
    • /
    • 2007
  • Surface finishing using magnetorheological (MR) fluid is useful to finish small but not too small workpieces such as those in a few millimeter scale. However, due to the high surface hardness, this finishing process does not seem to be suit for applying to a hard disk slider. In this work, a preliminary study is performed on the finishing of the hard disk slider surface with a mixture of an MR fluid and diamond powder. During a wheel type MR finishing process, centrifugal force is found to be a major factor to cause a reduction in material remove rate (MRR), which is supported by a theoretical model. To facilitate this founding, the rotational speed of tool is confined to 500rpm while a rectilinear alternating motion with the mean speed, which is equivalent to the rotational speed, is additionally applied to the workpieces. As a consequence, MRR of about 2 times of the sole rotational case is obtained. This paper shows that MR finishing process can be used to polish a hard material in millimeter scale efficiently by controlling the speeds of the tool and the workpiece.

  • PDF

A Study on The Vibration Reduction of a Driver Seat Controlling an MR Fluid Damper (자기유변유체 댐퍼를 이용한 운전석의 진동감쇠에 대한 연구)

  • 안병일;전도영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.861-866
    • /
    • 2002
  • A seat suspension system with a controlled MR(Magneto Rheological) fluid damper is introduced to improve the ride quality and prevent the health risk of a driver compared to fixed seats. The system is located between a seat cushion and the base, and is composed of a spring, MR fluid damper and controller. The MR fluid damper designed in valve mode is capable of producing a wide range of damping force according to applied currents. In experiments, a person was sitting on the controlled seat excited by a hydraulic system The skyhook control, continuous skyhook control and relative displacement control were applied and the continuous skyhook control improved the vibration suppression by 36.6%.

Fairing Design Optimization of Missile Hanger for Drag Reduction (유도탄 행거 항력 저감을 위한 페어링 형상 최적화)

  • Jeong, Sora
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.527-535
    • /
    • 2019
  • Hanger in a rail-launched missile protrudes in general and causes to increase significant drag force. One method to avoid the significant increase of drag force is to apply fairings on the hanger. In this paper, sloping shaped fairing parameters of height, width, and length are optimized to minimize the drag force under subsonic speed region by examining three configurations of fairings : front-fairing only, rear-faring only, and the both front and rear fairing. We use Latin Hypercube Sampling method to determine the experimental points, and computational fluid dynamics with incompressible RANS solver was applied to acquire the data at sampling points. Then, we construct a meta model by kriging method. We find the best choice among three configurations examined : both front and rear fairing reduce the drag force by 63 % without the constraint of fairing mass, and front fairing reduced the drag force by 52 % with the constraint of hanger mass.

Drag Reduction on a Square Prism Using a Detached Splitter Plate (분리된 분할판에 의한 정방형주의 항력감소)

  • Ro, Ki-Deok;Yoon, Seong-Min;Choi, Dong-Hyeon;Kim, Jae-Hyeon;Sim, Eun-Chong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.157-157
    • /
    • 2012
  • The Characteristics of the drag reduction of a square prism having a detached splitter plate at the wake side was investigated by measuring of fluid force on the square prism and by visualization of the field using PIV. The experimental parameters were the width ratios(H/B=0.5~1.5) of splitters to the prism width and the gap ratios (G/B=0~2) between the prism and the splitter plate. The drag reduction rate was increased with H/B, and was increased and decreased with G/B. The maximum drag reduction rate was represented by 24.2% at H/B=1.5 and G/B=0.5. The two vortices were generated by the splitter plate at the wake region of the prism. The direction of the vortex was clockwise at the upside of the splitter plate and counterclockwise at the downside.

  • PDF

A Study on the Transient Motion Analysis for the Liquid Balinced Washing Machine (액체밸런서를 고려한 세탁기의 과도응답 특성에 관한 연구)

  • 이동익;오재응
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 1995
  • In order to investigate the effect of liquid balancer in washing machine, we identify the vibration characteristics of suspension system of washing machine and formulate the 4 D. O. F. system dynamic equations. As the washing machine rotates higher speed, it is emphasized to reduce the ecentric force due to unbalanced mass. Nowadays, the most effective cancelling method of eccentric force is known as the usage of liquid balancer. To determine the liquid distribution in liquid balancer, the fluid statics is considered. The system dynamic equations are solved by Runge-Kutta method and represent the good characteristics of real washing machine in X-Y plane. The accuracy of the numerical solution was examined by experiments. The simulation results show that the unbalanced mass has so much influence on vibration magnitude and the rotating shape of spin-basket. But the effect of mass reduction due to the dehydration of the spin-basket has little influence on transient vibration.

Fluid Force Suppression of a Square Prism near Plane Wall (벽면근처에 놓인 정방형주의 유체력 제어)

  • Kim, K.S.;Ro, Ki-Deok;Kang, M.H.;Byun, Y.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.61-62
    • /
    • 2006
  • The suppression of fluid force acting on a square prism near plane wall was studied by attaching fences on the comers of the prism. The height of the fence was 10% of the square width and the range of Reynolds number considered was $Re=2.0{\times}10^4$. The experimental parameters were the attaching position and numbers of fences, the space ratios $G/B(G/B=0.1{\sim}1.2)$ between prism and plane wall. The average drag coefficients were increased and the average hit coefficients were decreased and increased with the space ratios foulard plane wall. The drag of the prism was reduced average 7.6% with the space ratios by attaching the normal fence at the rear and upper comer and the horizontal normal fence at the rear and lower corner on the prism.

  • PDF

The effect of Reynolds numbers on the steady state aerodynamic force coefficients of the Stonecutters Bridge deck section

  • Hui, M.C.H.;Zhou, Z.Y.;Chen, A.R.;Xiang, H.F.
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.179-192
    • /
    • 2008
  • In a wind tunnel experiment employing a reduced scale model, Reynolds number (Re) can hardly be respected. Its effects on the aerodynamics of closed-box bridge decks have been the subject of research in recent years. Stonecutters Bridge in Hong Kong is a cable-stayed bridge having an unprecedented central span of 1018m. The issue of Re sensitivity was raised early in the design phase of the deck of Stonecutters Bridge. The objective of this study is to summarise the results of various wind tunnel experiments in order to demonstrate the effect of Re on the steady state aerodynamic force coefficients. The results may provide an insight on the choice of scale for section model experiments in bridge design projects. Computational Fluid Dynamics (CFD) analysis of forces on bridge deck section was also carried out to see how CFD results are compared with experimental results.