• Title/Summary/Keyword: Fluid Film

Search Result 501, Processing Time 0.029 seconds

MRR model for the CMP Process Considering Relative Velocity (상대속도를 고려한 CMP 공정에서의 연마제거율 모델)

  • 김기현;오수익;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.225-229
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) process becomes one of the most important semiconductor processes. But the basic mechanism of CMP still does not established. Slurry fluid dynamics that there is a slurry film between a wafer and a pad and contact mechanics that a wafer and a pad contact directly are the two main studies for CMP. This paper based on the latter one, especially on the abrasion wear model. Material Removal Rate(MRR) is calculated using the trajectory length of every point on a wafer during the process time. Both the rotational velocity of a wafer and a pad and the wafer oscillation velocity which has omitted in other studies are considered. For the purpose of the verification of our simulation, we used the experimental results of S.H.Li et al. The simulation results show that the tendency of the calculated MRR using the relative velocity is very similar to the experimental results and that the oscillation effect on MRR at a real CMP condition is lower than 1.5%, which is higher than the relative velocity effect of wafer, and that the velocity factor. not the velocity itself, should be taken into consideration in the CMP wear model.

A Study on the condensate Retention at Horizontal Integral-Fin tubes (낮은 핀을 가진 수평관의 응축액 억류에 관한 연구)

  • 한규일;조동현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.151-165
    • /
    • 1996
  • Relation between condensate retention and heat transfer performance is studied for condensation of CFC-11 on horizontal integral-fin tubes. Eight tubes with trapezoidally shaped integral fin density from 738fpm to 1654fpm and 10, 30 grooves are tested. The liquid retention angles are measured by the height gauge, and each tube is tested under static(non-condensing) condition (CFC-11, water) and under dynamic(condensing) condition (CFC-11). The analytical model predicts the amount of liquid retention on a horizontal integral-fin tubes within+10 percent over most of the data. Average retention angle increases as both surface tension-to-density ratio($\sigma/\rho$) and fin density(fpm) increase, The tube having a fin density of 1299~1654fpm has the best heat transfer performance. The amount of surface flooding must keep below of 40 percent for best heat transfer performance at condensation. The tube having low number of fin density must be used for fluids having high values of $\sigma/\rho$(water, (TEX)$NH_3$, ect.) and the tube having high number of fin density must be used for the fluid having low values of $\sigma/\rho$(R-11, R-22, etc.)

  • PDF

Effect of Flow Rate on Erosion Corrosion Damage and Damage Mechanism of Al5083-H321 Aluminum Alloy in Seawater Environment (해수 환경에서 Al5083-H321 알루미늄 합금의 침식부식 손상에 미치는 유속의 영향과 손상 메카니즘)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.115-121
    • /
    • 2020
  • In this study, erosion tests and erosion-corrosion tests of Al5083-H321 aluminum alloy were conducted at various flow rates in seawater. The erosion tests were conducted at a flow rate of 0 to 20 m/s, and erosion-corrosion tests were performed by potentiodynamic polarization method at the same flow rate. Characteristic evaluation after the erosion test was conducted by surface analysis. Characteristic evaluation after the erosion-corrosion test was performed by Tafel extrapolation and surface analysis. The results of the surface analysis after the erosion test showed that surface damage tended to increase as the flow rate increased. In particular, intermetallic particles were separated due to the breakdown of the oxide film at 10 m/s or more. In the erosion-corrosion test, the corrosion current density increased as the flow rate increased. Additionally, the surface analysis showed that surface damage occurred in a vortex shape and the width of the surface damage tended to increase as the flow rate increased. Moreover, damage at 0 m/s, proceeded in a depth direction due to the growth of pitting corrosion, and the damaged area tended to increase due to acceleration of the intermetallic particle loss by the fluid impact.

Carbon Plume Modeling Assisted by Ar Plasmas (Ar 플라즈마 상태에서 운동하는 탄소 입자 모델링)

  • So, Soon-Youl;Lee, Jin;Chung, Hae-Deok;Yeo, In-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2163-2165
    • /
    • 2005
  • A pulsed laser ablation deposition (PLAD) technique has been used for producing fine particle as well as thin film at relatively low substrate temperatures. However, in order to manufacture and evaluate such materials in detail, motions of plume particles generated by laser ablation have to be understood and interactions between the particles by ablation and gas plasma have to be clarified. Therefore, this paper was focused on the understanding of plume motion in laser ablation assisted by Ar plasma at 50(mTorr). Two-dimensional hybrid model consisting of fluid and particle models was developed and three kinds of plume particles which are carbon atom (C), ion $(C^+)$ and electron were considered in the calculation of particle method It was obtained that ablated $C^+$ was electrically captured in Ar plasmas by strong electric field (E). The difference between motions of the ablated electrons and $C^+$ made E strong and the collisional processes active.

  • PDF

Effect of the Mg Ion Containing Oxide Films on the Biocompatibility of Plasma Electrolytic Oxidized Ti-6Al-4V

  • Lee, Kang;Choe, Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, we prepared magnesium ion containing oxide films formed on the Ti-6Al-4V using plasma electrolytic oxidation (PEO) treatment. Ti-6Al-4V surface was treated using PEO in Mg containing electrolytes at 270V for 5 min. The phase, composition and morphology of the Mg ion containing oxide films were evaluated with X-ray diffraction (XRD), Attenuated total reflectance Fourier transform infrared (ATR-FTIR) and filed-emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectrometer (EDS). The biocompatibility of Mg ion containing oxide films was evaluated by immersing in simulated body fluid (SBF). According to surface properties of PEO films, the optimum condition was formed when the applied was 270 V. The PEO films formed in the condition contained the properties of porosity, anatase phase, and near 1.7 Ca(Mg)/P ratio in the oxide film. Our experimental results demonstrate that Mg ion containing oxide promotes bone like apatite nucleation and growth from SBF. The phase and morphologies of bone like apatite were influenced by the Mg ion concentration.

Congenital Esophageal Atresia with Tracheoesophageal Fistula -A Case Report- (선천성 식도폐쇄 및 기관식도루 -1례 보고-)

  • Lee, Mun-Geum;Jang, Un-Ha
    • Journal of Chest Surgery
    • /
    • v.27 no.6
    • /
    • pp.489-493
    • /
    • 1994
  • Our patient was a 2.3 kg, male of 33 weeks gestation and spontaneous vaginal delivery. Copious salivary secretion, mild aspiration pneumonia episode due to tracheoesophageal fistula and intermittent cyanotic appearance due to hypoxia were noted shortly after birth. Head up position, frequent upper pouch suction, and adequate fluid and antibiotic therapy were done in incubator. Combined Chest and abdominal film was revealed gas in the stomach and an haziness in right chest with mediastinal shift to the right side. Esophagogram revealed markedly dilated proximal esophagus as blind pouch, and Two dimensional echocardiography showed the Ventricular Septal Defect. The conclusion was congenital esophageal atresia with tracheoesophageal fistula, Vogt-Gross type C, Waterston Risk Category B. Surgical correction with Beardmore anastomosis was performed extrapleurally through 3rd rib bed after the cannulation of umbilical vein and preliminary gastrostomy. The fistula was closed by triple ligation and the upper pouch was then brought down to the presenting surface of the lower esophageal segment that incised, and end to side anastomosis was underwent using interrupt suture placed through the full thickness of both upper pouch and lower esophageal segment. The postoperative patient was well tolerated and recovered uneventfully, permitted feeding on 7th postoperative day after esophagogram.

  • PDF

Finite Element Analysis of a Coupled Hydrodynamic Journal and Thrust Bearing in a Computer Hard Disk Drive (컴퓨터 하드디스크 드라이브에 사용되는 저널과 스러스트가 연성된 유체 동압 베어링의 유한 요소 해석)

  • Kim, Hak-Woon;Lee, Sang-Hoon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.846-852
    • /
    • 2004
  • This paper proposes a method to calculate the characteristics of a coupled hydrodynamic journal and thrust bearing of a HDD spindle motor. The governing equations for the journal and thrust bearings are the two dimensional Reynolds equations in ${\theta}z$ and $r\theta$ planes, respectively. Finite element method is appropriately applied to analyze the coupled journal and thrust bearing by satisfying the continuity of mass and pressure at the interface between the journal and thrust bearings. The pressure in a coupled bearing is calculated by applying the Reynolds boundary condition and compared with that by using the Half-Sommerfeld boundary condition. The static characteristics are obtained by integrating the pressure along the fluid film. The flying height of spindle motor is measured to verify the proposed analytical result. This research shows that the proposed method can describe HDB in a HDD system more accurately and realistically than the separate analysis of a journal or thrust bearing.

  • PDF

A comprehensive study of spin coating as a thin film deposition technique and spin coating equipment

  • Tyona, M.D.
    • Advances in materials Research
    • /
    • v.2 no.4
    • /
    • pp.181-193
    • /
    • 2013
  • Description and theory of spin coating technique has been elaborately outlined and a spin coating machine designed and fabricated using affordable components. The system was easily built with interdisciplinary knowledge of mechanics, fluid mechanics and electronics. This equipment employs majorly three basic components and two circuit units in its operation. These include a high speed dc motor, a proximity sensor mounted at a distance of about 15 mm from a reflective metal attached to the spindle of the motor to detect every passage of the reflective metal at its front and generate pulses. The pulses are transmitted to a micro-controller which process them into rotational speed (revolution per minute) and displays it on a lead crystal display (LCD) which is also a component of the micro-controller. The circuit units are a dc power supply unit and a PWM motor speed controlling unit. The various components and circuit units of this equipment are housed in a metal casing made of an 18 gauge black metal sheet designed with a total area of 1, $529.2cm^2$. To illustrate the use of the spin-coating system, ZnO sol-gel films were prepared and characterized using SEM, XRD, UV-vis, FT-IR and RBS and the result agrees well with that obtained from standard equipment and a speed of up to 9000 RPM has been achieved.

The Study on the Properties of He Glow discharge in a Dielectric Barrier Discharge (DBD) Model (DBD 전극구조에서의 He 가스 글로우방전 특성연구)

  • So, Soon-Youl
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.214-220
    • /
    • 2018
  • Light sources induced by gas discharge using rare gases have been widely used in the thin film deposition, the surface modification and the polymer etching. A dielectric barrier discharge (DBD) has been developed in order to consistently emit light and control the wavelength of the emission light. However, much research on the characteristics of the movement of discharge particles is required to improve the efficiency of the light lamp and the life-time of the light apparatus in detail. In this paper, we developed a He DBD discharge simulation tool and investigated the characteristics of discharge particles which were electrons, two positive ions ($He^+$, $He_2^+$) and 5 excited particles ($He^*(1S)$, $He^*(3S)$, $He^*$, $He^{**}$, $He^{***}$). The discharge currents showed the transition from pulse mode to continuous mode with the increase of power. With the accumulated charges on the barrier walls, the discharge current was rapidly increased and caused oscillation of the discharge voltage. As the gas pressure increased, $He_2^+$ and $He^*(3S)$ became the dominant activated particles. The input power was mostly consumed by electrons and $He_2^+$ ion. And the change curve showed that power consumption by electrons increased more with gas pressure than with source voltage or frequency.

Numerical Study on Wafer Temperature Considering Gap between Wafer and Substrate in a Planetary Reactor (Planetary 형 반응기에서 웨이퍼와 기판 사이의 틈새가 웨이퍼 온도에 미치는 영향에 대한 연구)

  • Ramadan, Zaher;Jung, Jongwan;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • Multi-wafer planetary type chemical vapor deposition reactors are widely used in thin film growth and suitable for large scale production because of the high degree of growth rate uniformity and process reproducibility. In this study, a two-dimensional model for estimating the effect of the gap between satellite and wafer on the wafer surface temperature distribution is developed and analyzed using computational fluid dynamics technique. The simulation results are compared with the results obtained from an analytical method. The simulation results show that a drop in the temperature is noticed in the center of the wafer, the temperature difference between the center and wafer edges is about $5{\sim}7^{\circ}C$ for all different ranges of the gap, and the temperature of the wafer surface decreases when the size of the gap increases. The simulation results show a good agreement with the analytical ones which is based on one-dimensional heat conduction model.

  • PDF