• 제목/요약/키워드: Fluid Dynamic Efficiency

검색결과 142건 처리시간 0.025초

습식 배연탈황 시스템의 효율 향상을 위한 전산해석 (Computational Fluid Dynamic Analysis for Improving the Efficiency of Desulfurization System for the Wet Flue Gas)

  • 황우현;이경옥
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권2호
    • /
    • pp.161-171
    • /
    • 2014
  • 본 논문에서는 CFDRC 사의 상용 CFD 소프트웨어인 CFD-ACE+로 전산유체역학 기법을 적용하여 수치 해석을 수행하여 배연탈황 설비에서 Induced Draft Fan(I.D.Fan) 출구부터 Booster Up Fan(B.U.Fan) 입구까지 난류 유동장과 연소 유동 문제를 모사하여 배기가스 계통 설비의 유동 특성을 해석하였다. 배기가스가 I.D.Fan 출구 ~ B.U.Fan 입구 구간을 적정속도로 균일하게 유동하여 B.U.Fan로 균일하게 유입되도록 하며 압력손실이 적게 발생하도록 설계기준 보일러 부하와 최대연속 정격유량의 보일러 부하에서 이 구간의 안내깃을 검토하였다. 검토한 결과에 대해 CFD 해석을 수행하여 I.D.Fan 출구에서 안내깃을 제거하고 B.U.Fan 입구 전에 안내깃을 보강할 수 있도록 설계를 변경하였다. 배기가스 계통에 변경된 설계를 적용하여 수치모사한 결과에서 배연탈황 설비 내부의 배기가스 압력손실이 줄어들고 유속과 유선이 균일하게 유동할 수 있어 배연탈황 시스템의 효율이 향상한 것을 확인하였다.

Dynamic Simulation of Pump-Storage Power Plants with different variable speed configurations using the Simsen Tool

  • Kruger, Klaus;Koutnik, Jiri
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.334-345
    • /
    • 2009
  • Pumped storage power plants are playing a significant role in the contribution to the stabilization of an electrical grid, above all by stable operation and fast reaction to sudden load respectively frequency changes. Optimized efficiency and smooth running characteristics both in pump and turbine operation, improved stability for synchronization in turbine mode, load control in pump mode operation and also short reaction times may be achieved using adjustable speed power units. Such variable speed power plants are applicable for high variations of head (e.g. important for low head pump-turbine projects). Due to the rapid development of power semiconductors and frequency converter technology, feasible solutions can be provided even for large hydro power units. Suitable control strategies as well as clear design criteria contribute significantly to the optimal usage of the pump turbine and motor-generators. The SIMSEN tool for dynamic simulations has been used for comparative investigations of different configurations regarding the power converter topology, types of semiconductors and types of motor-generators including the coupling to the hydraulic system. A brief overview of the advantages & disadvantages of the different solutions can also be found in this paper. Using this approach, a customized solution minimizing cost and exploiting the maximum usage of the pump-turbine unit can be developed in the planning stage of new and modernization pump storage projects.

유동해석을 통한 배수지형태에 따른 배수효율분석 (Analysis of Drainage Efficiency of Different Type of Drainage using Computational Fluid Dynamic Method)

  • 조중연;고선호;김홍건
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.34-43
    • /
    • 2017
  • Large amounts of household water are required as common households change from the single-residence types of the past to group-residence types. Therefore, the management of reservoirs is urgently required to ensure the supply of clean household water to users. Important considerations for household water include the duration for which the water is stored in the reservoir, the disinfectant's dilution capacity, and the size of the reservoir to allow for the amount of water required for emergencies and firefighting. The drainage efficiency was analyzed in this study using computational fluid analysis for existing rectangular reservoirs and the newly proposed hexagonal reservoir. Thus, it was determined that the centrifugal force generated at the inlet was maintained until the outlet due to the approximately circular shape of the hexagonal reservoir. The findings of this study verified that the centrifugal force improved the flow rate by approximately 35% compared to existing rectangular reservoirs and that drainage was performed efficiently without stagnation zone.

Numerical study of direct contact membrane distillation process: Effects of operating parameters on TPC and thermal efficiency

  • Zamaniasl, Mohammadmehdi
    • Membrane and Water Treatment
    • /
    • 제10권5호
    • /
    • pp.387-394
    • /
    • 2019
  • Membrane distillation (MD) is one of the water treatment processes which involves the momentum, heat and mass transfer through channels and membrane. In this study, CFD modeling has been used to simulate the heat and mass transfer in the direct contact membrane distillation (DCMD). Also, the effect of operating parameters on the water flux is investigated. The result shows a good agreement with the experimental result. Results indicated that, while feed temperature is increasing in the feed side, water flux improves in the permeate side. Since higher velocity leads to the higher mixing and turbulence in the feed channel, water flux rises due to this increase in the feed velocity. Moreover, results revealed that temperature polarization coefficient is rising as flow rate (velocity) increases and it is decreasing while the feed temperature increases. Lastly, the thermal efficiency of direct contact membrane distillation is defined, and results confirm that thermal efficiency improves while feed temperature increases. Also, flow rate increment results in enhancement of thermal efficiency.

Numerical modeling of thrombolysis - Effects of nozzle types and ejection velocities

  • Jeong, Woo-Won;Rhee, Kye-Han
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제4권2호
    • /
    • pp.13-18
    • /
    • 2006
  • Direct injection of a fibrinolytic agent to the intra-arterial thrombosis may increase the effectiveness of thrombolysis by enhancing the permeation of thrombolytic agents into the blood clot. Permeation of fibrinolytic agents into a clot is influenced by the surface pressure, which is determined by the injection velocity of fibrinolytic agents. Computational fluid dynamic methods were used in order to predict clot lysis for different jet velocities and nozzle arrangements. Firstly, thrombolysis of a clot was mathematically modeled based on the pressure and lysis front velocity relationship. Direct injection of a thrombolytic agent increased the speed of thrombolysis significantly and the effectiveness was increased as the ejecting velocity increased. The nine nozzles model showed about 20% increase of the lysed volume, and the one and seventeen nozzles models did not show significant differences. Secondly, thrombolysis was modeled based on the enzyme transport and the fluid flow equations, and quasi steady numerical analysis was performed. Clot lysis efficiency was also increased as injection velocity increased.

  • PDF

A Study on the Fluid Dynamic of Catalytic Converter in Exhaust Pipe

  • Wangwenhai, Wangwenhai;Cho, Haeng Muk
    • 에너지공학
    • /
    • 제23권2호
    • /
    • pp.114-118
    • /
    • 2014
  • The need to maximize the exhaust pipe inside surface and to minimize exhaust resistance And Find the best point between the exhaust and the duration of contact between the two surfaces. Exhaust gas mass flow On the whole cross section of catalytic converters more uniform distribution will contribute to its usability. Based on the flow rate of fluid traces given color, Exhaust fluid resistance in the porous catalyst can be estimated, from the efficiency of the catalytic converter that is very important.

Isogeometric analysis of the seismic response of a gravity dam: A comparison with FEM

  • Abdelhafid Lahdiri;Mohammed Kadri
    • Advances in Computational Design
    • /
    • 제9권2호
    • /
    • pp.81-96
    • /
    • 2024
  • Modeling and analyzing the dynamic behavior of fluid-soil-structure interaction problems are crucial in structural engineering. The solution to such coupled engineering systems is often not achievable through analytical modeling alone, and a numerical solution is necessary. Generally, the Finite Element Method (FEM) is commonly used to address such problems. However, when dealing with coupled problems with complex geometry, the finite element method may not precisely represent the geometry, leading to errors that impact solution quality. Recently, Isogeometric Analysis (IGA) has emerged as a preferred method for modeling and analyzing complex systems. In this study, IGA based on Non-Uniform Rational B-Splines (NURBS) is employed to analyze the seismic behavior of concrete gravity dams, considering fluid-structure-foundation interaction. The performance of IGA is then compared with the classical finite element solution. The computational efficiency of IGA is demonstrated through case studies involving simulations of the reservoir-foundation-dam system under seismic loading.

DAF 공정에서 무기 고형입자의 유체역학적 충돌효율과 부상특성 (Hydrodynamic Collision Efficiency and Flotation Characteristics of Inorganic Particles in DAF Process)

  • 곽동희;김성진;이화경;정흥조;이재욱;정팔진
    • 상하수도학회지
    • /
    • 제16권6호
    • /
    • pp.655-662
    • /
    • 2002
  • Separation characteristics of inorganic particles occurred during heavy rainwater were investigated in DAF (dissolved air flotation) process. In order to remove the inorganic particles effectively, the collision and flotation efficiencies were examined from a hydrodynamic point of view. Generally, the collision efficiency increased with floc size under the variation of fluid dynamic conditions including inertial force. However, more precise model should be required to analysis the collision efficiency expressed both the physical properties for inorganic particles and hydrodynamic conditions for a reactor.

전기자동차 내 리튬이온전지 화재로 발생하는 독성가스의 위험성 분석 (Consequence Analysis of Toxic Gases Generated by Fire of Lithium Ion Batteries in Electric Vehicles)

  • 오의영;민동석;한지윤;정승호;강태선
    • 한국가스학회지
    • /
    • 제23권1호
    • /
    • pp.54-61
    • /
    • 2019
  • 휴대용 전자기기의 시장이 성장함에 따라서 Lithium Ion Battery(LIB)의 수요 또한 증가하고 있다. LIB는 다른 2차 전지에 비해 높은 효율성을 보이지만 열 폭주(Thermal runaway)로 인한 폭발/화재의 위험성이 있다. 특히나 대용량 LIB cell을 탑재한 Electric Vehicle(EV)의 경우 화재로 발생하는 대량의 독성 가스로 인한 위험성 또한 존재한다. 따라서 사고 피해를 최소화하기 위한 EV 화재로 발생하는 독성 가스의 위험성 분석이 필요하다. 이 연구에서는 EV의 화재로 발생하는 독성 가스의 유동을 전산유체역학(Computational Fluid Dynamic; CFD)을 이용하여 해석하였다. 문헌 조사 결과와 국내 EV 자료를 기반으로 시나리오를 설정하여 시나리오 발생 경과시간에 따른 독성 가스의 확산을 수치 해석하여 위험성에 대하여 분석 하였다. 이 연구는 EV 화재로 인한 독성 가스의 위험성을 분석하여 사고 발생에 의한 인명, 재산피해를 최소화하는데 의의를 가진다.

EQUIVALENT MATERIAL PROPERTIES OF PERFORATED PLATE WITH TRIANGULAR OR SQUARE PENETRATION PATTERN FOR DYNAMIC ANALYSIS

  • Jhung, Myung-Jo;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.689-696
    • /
    • 2006
  • For a perforated plate, it is challenging to develop a finite element model due to the necessity of the fine meshing of the plate, especially if it is submerged in fluid. This necessitates the use of a solid plate with equivalent material properties. Unfortunately, the effective elastic constants suggested by the ASME code are deemed not valid for a modal analysis. Therefore, in this study the equivalent material properties of a perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.