• Title/Summary/Keyword: Fluid Added Mass

Search Result 169, Processing Time 0.03 seconds

Added masses computation for unconventional airships and aerostats through geometric shape evaluation and meshing

  • Tuveri, Marco;Ceruti, Alessandro;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.241-257
    • /
    • 2014
  • The modern development in design of airships and aerostats has led to unconventional configurations quite different from the classical ellipsoidal and spherical ones. This new class of air-vehicles presents a mass-to-volume ratio that can be considered very similar to the density of the fluid displaced by the vehicle itself, and as a consequence, modeling and simulation should consider the added masses in the equations of motion. The concept of added masses deals with the inertia added to a system, since an accelerating or decelerating body moving into a fluid displaces a volume of the neighboring fluid. The aim of this paper is to provide designers with the added masses matrix for more than twenty Lighter Than Air vehicles with unconventional shapes. Starting from a CAD model of a given shape, by applying a panel-like method, its external surface is properly meshed, using triangular elements. The methodology has been validated by comparing results obtained with data available in literature for a known benchmark shape, and the inaccuracies of predictions agree with the typical precision required in conceptual design. For each configuration, a CAD model and a related added masses matrix are provided, with the purpose of assisting the practitioner in the design and flight simulation of modern airships and scientific balloons.

Sloshing Analysis in Rectangular Tank with Porous Baffle (투과성 내부재가 설치된 사각형 탱크내의 슬로싱 해석)

  • Cho, IL-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • An analytical model of liquid sloshing is developed to consider the energy-loss effect through a partially submerged porous baffle in a horizontally oscillating rectangular tank. The nonlinear boundary condition at the porous baffle is derived to accurately capture both the added inertia effects and the energy-loss effects from an equivalent non-linear drag law. Using the eigenfunction expansion method, the horizontal hydrodynamic force (added mass, damping coefficient) on both the wall and baffle induced by the fluid motion is assessed for various combinations of porosity, submergence depth, and the tank's motion amplitude. It is found that a negative value for the added mass and a sharp peak in the damping curve occur near the resonant frequencies. In particular, the hydrodynamic force and free surface amplitude can be largely reduced by installing the proper porous baffle in a tank. The optimal porosity of a porous baffle is near P=0.1.

The Effect of the Boundary Condition on the Added Mass of a Rectangular Plate (직사각형판(直四角形板)의 탄성접수진동(彈性接水振動)에서 주변지지조건(周緣支持條件)의 영향(影響))

  • K.C.,Kim;J.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.15 no.2
    • /
    • pp.1-11
    • /
    • 1978
  • Using the elliptical cylindrical function, the added masses of thin rectangular plates vibrating elastically in an infinite ideal fluid are calculated. For the boundary conditions of the plates, two models are adopted. The plate which is simply-supported on two opposite edges while the other edges are clamped is one and the other is the plate which is simply-supported on two opposite edges while the other edges are free. Same examples are calculated numerically for the fundamental mode in each cases. And the effect of the boundary condition on the added mass are investigated by comparing these data with those of Kim's[4] which were calculated for the simply-supported plates by the same method. It is concluded that it is possible to predict the added mass of a rectangular plate, whose boundary condition is not treated in this report, by using the result of this investigation.

  • PDF

Stationkeeping of an Airship

  • Park, Chang-Su;Bang, Hyo-Choong;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.1-148
    • /
    • 2001
  • The airship is starting to receive new highlights as a stable floating platform. A floating platform can serve as a telecommunication relay station or an environmental outpost. Much of these operations require unmanned autonomous operation on the airship. Due to difficulties in modelling and identifying the airship, controlling the airship is not an easy task. Different from the normal aircraft, the airship is affected by "added mass" and buoyancy. The added mass is the additional mass felt required to move the object in a fluid. As we are searching for a stable floating platform, controlling the airship to keep station is critical. We use a simple airship model with added mass for simulation. Classical controller is used to find acceptable airship performances.

  • PDF

Dynamic Characteristics of KALIMER Fuel Rod Mock-up (모의 핵연료봉의 수중동특성 해석 및 검증실험)

  • 박진호;이정한;김봉수;안창기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.683-688
    • /
    • 2003
  • Vibration characteristics of a fuel rod to be used in KALIMER(Korean Advanced LIquid MEtal Reactor) have been estimated through 3-dimensional finite element analysis and verified by experiment. The fundamental natural frequencies are found to be 6㎐ in air and 2.5㎐ in water. respectively. It has been found that in-water natural frequencies of the fuel rod are lower than in-air ones due to the added mass effect of the fluid filled inside the outer cylinder and they further decreases as the gap between the fuel rod and the outer cylinder increases, namely the added mass effect increases as the gap increases(maximum 54%). It has been also shown that the mass of the wire wrap axially coiled around the fuel rod do not affect the natural frequencies.

  • PDF

Dynamic characteristics assessment of reactor vessel internals with fluid-structure interaction

  • Je, Sang Yun;Chang, Yoon-Suk;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1513-1523
    • /
    • 2017
  • Improvement of numerical analysis methods has been required to solve complicated phenomena that occur in nuclear facilities. Particularly, fluid-structure interaction (FSI) behavior should be resolved for accurate design and evaluation of complex reactor vessel internals (RVIs) submerged in coolant. In this study, the FSI effect on dynamic characteristics of RVIs in a typical 1,000 MWe nuclear power plant was investigated. Modal analyses of an integrated assembly were conducted by employing the fluid-structure (F-S) model as well as the traditional added-mass model. Subsequently, structural analyses were carried out using design response spectra combined with modal analysis data. Analysis results from the F-S model led to reductions of both frequency and Tresca stress compared to those values obtained using the added-mass model. Validation of the analysis method with the FSI model was also performed, from which the interface between the upper guide structure plate and the core shroud assembly lug was defined as the critical location of the typical RVIs, while all the relevant stress intensities satisfied the acceptance criteria.

Experimental and analytical study on hydroelastic vibration of tank (선박내 접수탱크 진동에 대한 실험/이론적 연구)

  • Kim, Kuk-Su;Cho, H.D.;Kong, Y.M.;Heo, J.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.96-100
    • /
    • 2008
  • In this paper, a experimental and theoretical study is carried out on the hydroelastic vibration for a rectangular bottom and side plate of tank. It is assumed that the tank wall is clamped along the plate edges. The fluid velocity potential is used for the simulation of fluid domain and to obtain the added mass due to plate vibration. It is assumed that the fluid is imcompressible and inviscid. Assumed mode method is utilized to the plate model and hydrodynamic force is obtained by the proposed approach. The coupled natural frequencies are obtained from the relationship between kinetic energies of a wall including fluid and the potential energy of the wall. The theoretical result is compared with the three-dimensional finite element method. In order to verify the result, modal test was carried out for bottom/side plate of tank model by using impact hammer. It was found the fundamental natural frequency of bottom plate is lower than that of side plate of tank and theoretical result was in good agreement with that of commercial three-dimensional finite element program.

  • PDF

An Approximate Analytical Method for Hydrodynamic Forces on Oscillating Inner Cylinder in Concentric Annulus (동심원내에서 진동하는 내부 실린더에 작용하는 유체유발력의 근사적 해법)

  • 심우건
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.861-869
    • /
    • 1997
  • An approximate analytical method has been developed for estimating hydrodynamic forces acting on oscillating inner cylinder in concentric annulus. When the rigid inner cylinder executes translational oscillation, fluid inertia and damping forces on the oscillating cylinder are generated by unsteady pressure and viscous skin friction. Considering the dynamic-characteristics of unsteady viscous flow and the added mass coefficient of inviscid fluid, these hydrodynamic forces including viscous effect are dramatically simplified and expressed in terms of oscillatory Reynolds number and the geometry of annular configuration. Thus, the viscous effect on the forces can be estimated very easily compared to an existing theory. The forces are calculated by two models developed for relatively high and low oscillatory Reynolds numbers. The model for low oscillatory Reynolds number is suitable for relatively high ratio of the penetration depth to annular space while the model for high oscillatory Reynolds number is applicable to the case of relatively low ratio. It is found that the transient ratio between two models is approximately 0.2~0.25 and the forcea are expressed in terms of oscillatory Reynolds number, explicity. The present results show good agreements with an existing numerical results, especially for high and low penetration ratios to annular gap.

  • PDF

Free Vibration Analysis of Perforated Rectangular Plates Submerged in Fluid (유체에 잠긴 다공 직사각평판의 고유진동 해석)

  • 유계형;권대규;정경훈;이성철
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • This paper presented an experimental modal analysis of clamped perforated rectangular plates submerged in water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 1.750, 2.125, 2.500, 3.000 and 3.750. The natural frequencies of the perforated plates in air were obtained by the Rayleigh-Ritz method and compared with the experimental results. Good agreement was obtained between the analytical solution and experimental result. The experimental results in water showed that the mode shapes are not sensitive to the depth of submergence. The natural frequencies were shown to decrease drastically once the perforated plates come in contact with water. However, the natural frequencies decrease with the depth of submergence until a certain depth is reached, and become the asymptotic values beyond this depth of submergence. The depth of submergence did not affect the damping ratio greatly.

Beam-Like Ship Vibration Analysis in Consideration of Fluid (유체력을 고려한 보-유추 선체진동 해석)

  • Son, Choong-Yul
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.206-213
    • /
    • 1999
  • In the beam-like ship vibration analysis. three-dimensional correction factor(J-factor) can be calculated by considering the three-dimensional effect of the two-dimensional added mass. However, existing method is time-consuming with low accuracy in respect of global vibration analyses for vessels with large breadth. In this paper, to improve the demerit of the previous method, a new method of the beam-like ship vibration analysis is introduced In this method. the three-dimensional fluid added mass of surrounding water is calculated directly by solving the velocity potential problem using the Boundary Element Method (BEM). Then the three-dimensional added mass is evaluated as the lumped mass for each strip. Also, the beam-like ship vibration analysis for the structural beam model if performed with the lumped mass considered. It was verified that this new method is useful for the beam-like ship vibration analysis by comparing results obtained from both the existing method and the new method with experimental measurements for the open top container model.

  • PDF