• Title/Summary/Keyword: Flue-gas

Search Result 607, Processing Time 0.027 seconds

Evaluation of Collection Efficiency of Electrostatic Precipitator for Removing Limestone Slurry Particles (석회석 슬러리 입자 제거를 위한 전기집진기 포집효율 평가)

  • Lee, Gi-Hyuk;Kim, Moon-Won;Yu, Tae-U;Yook, Se-Jin
    • Particle and aerosol research
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 2019
  • Recently, there has been much research on the effect of fine dust on human body with increasing interest in the fine dust. Thermal power plant, which is considered as one of the main sources of fine dust, is reported to be responsible for 14% of the total amount of domestic fine dust in the Republic of Korea. Therefore, dust collecting devices in the thermal power plant need to be improved. In this study, the electrostatic precipitator (ESP) was considered to substitute for a mist eliminator used in flue gas desulfurization facility. By considering real situation in the flue gas desulfurization facility, the collection efficiency of the ESP was evaluated by using the sprayed limestone slurry particles. The collection efficiency of the ESP was higher than that of the mist eliminator, showing the possibility of replacing the mist eliminator with the ESP in flue gas desulfurization facility.

Operation Characteristics of Gas Engine Generator System using Coal Syngas (석탄 합성가스를 사용한 가스엔진 발전시스템 운전 특성)

  • Chung, Seok-Woo;Kim, Mun-Hyun;Lee, Seung-Jong;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.800-803
    • /
    • 2007
  • Gasification has been regarded as a core technology in dealing with environmental pollutants and in obtaining higher efficiency for power generation. Among several ways in utilizing produced syngas from gasification, power generation would be the most prominent application. Syngas from coal was applied to the readily available LPG engine from automobiles. Main purpose was to identify the combustion characteristics in the modified gas engine when using syngas of low heating value and to test the modification optionsin the LPG gas engine. Gas engine rpm and the corresponding flue gas composition were measured for each syngas input condition. Results showed that even with syngas at the heating value of $1300{\sim}1800$ kcal/$Nm^3$ corresponding to the $6{\sim}7%$ of LPG heating value, gas engine operated successfully only with the problems of high CO and oxygen concentrations in the flue gas.

  • PDF

Process Modeling of an Iron Ore Sintering Bed for Flue Gas Recirculation (배가스 재순환 적용을 위한 제철 소결 베드 프로세스 모델링)

  • Ahn, Hyung-Jun;Choi, Sang-Min;Cho, Byung-Kook
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.23-30
    • /
    • 2011
  • In the iron and steel manufacturing, sintering process precedes blast furnace to prepare feed materials by agglomerating powdered iron ore to form larger particles. There are several techniques which have devised to improve sintering production and productivity including flue gas recirculation(FGR) and additive gas enriched operation. The application of those techniques incurs variations of process configurations as well as inlet and outlet gas conditions such as temperature, composition, and flow rate which exert direct influence on reactions in the bed or the operation of the entire plant. In this study, an approach of sintering bed modeling using flowsheet process simulator was devised in consideration of FGR and the change of incoming and outgoing gas conditions. Results of modeling for both normal and FGR sintering process were compared in terms of outgoing gas temperature, concentration, and moisture distribution pattern as well as incoming gas conditions. It is expected to expand the model for various process configurations with FGR, which may provide the usefulness for design and operation of sintering plant with FGR.

Heat Integration and Economic Analysis of Dry Flue Gas Recirculation in a 500 MWe Oxy-coal Circulating Fluidized-bed (CFB) Power Plant with Ultra-supercritical Steam Cycle (순환 유동층 보일러와 초초임계 증기 사이클을 이용한 500 MWe급 순산소 화력발전소의 건식 재순환 흐름의 열 교환 및 경제성 분석)

  • Kim, Semie;Lim, Young-Il
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.60-67
    • /
    • 2021
  • This study presented techno-economic analysis of a 500 MWe oxy-coal power plant with CO2 capture. The power plant included a circulating fluidized-bed (CFB), ultra-supercritical steam turbine, flue gas conditioning (FGC), air separation unit (ASU), and CO2 processing unit (CPU). The dry flue gas recirculation (FGR) was used to control the combustion temperature of CFB. One FGR heat exchanger, one heat exchanger for N2 stream exiting ASU, and a heat recovery from CPU compressor were considered to enhance heat efficiency. The decrease in the temperature difference (ΔT) of the FGR heat exchanger that means the increase in heat recovery from flue gas enhanced the electricity and exergy efficiencies. The annual cost including the FGR heat exchanger and FGC cooling water was minimized at ΔT = 10 ℃, where the electricity efficiency, total capital cost, total production cost, and return on investment were 39%, 1371 M$, 90 M$, and 7%/y, respectively.

A Computer Simulation of the Combustion and Flueway of a Pulse Combustion Water Heater (맥동연소온수기의 연소실과 노도의 컴퓨터 시뮬레이션)

  • Kang, Kun;Shin, Sei-Kun;Kim, Min-Sik
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.64-72
    • /
    • 1989
  • In this study, the computer simulation for the heat transfer in pulse combustion water heater is performed. The attention is focused to the effects of the installation of corebuster in the flue tube on heat transfer. The energy equations are established for both wall and gas side in the combustion chamber, flue way, exhaust chamber and muffler, and the numerical calculation is executed. Zone method takes longer computer calculation time compared with semi-zone method. Semi-zone method is chosen for numerical calculation. As a result of this study, it is found that the installation of the core buster in flue tube increases total heat transfer. It is also found that the total heat transfer is increased with the increasing of the ratio of the cross section area of corebuster to that of the flue tube. However, the heat transfer effect is negligible for the area ratio above 0.5.

  • PDF

Studies on the Phenol Compounds in Smoke Total Particulate Matters of Flue-cured Tobacco Leaves (황색종 잎담배의 연기응축물중 페놀 화합물에 관한 연구)

  • 복진영;백순옥;김상범;안동명;조수헌
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.2
    • /
    • pp.162-167
    • /
    • 2001
  • This study was carried out to quantitatively determine phenol compounds in smoke total particulate matter(TPM) to evaluate the qualititive characteristics of flue-cured tobacco varieties(NC82, KFl14 and KFl18). After collecting The TPM by using smoking machine, the concentration of phenol compounds were analyzed by gas chromatography as their trimethylsilyl derivative on a fused capillary column bonded with a 5% PE ME siloxane stationary phase. In all the flue-cured tobacco varieties, the major phenol components were monohydroxy compounds. The order of the highest concentration of total phenol compounds in TPM was NC82, KF114 and KFl18 but the contents of dihydroxy compound in the KFl18 was higher than those of NC82 and KF114.

  • PDF

Comparison of Volatile Aroma Components and Non-volatile Organic Acids in Tobacco Lamina and Stems. (잎담배 엽육과 주맥의 휘발성 정유성분 및 비휘발성 유기산의 비교)

  • 김영회;박준영;양광규;김옥찬
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.8 no.2
    • /
    • pp.51-66
    • /
    • 1986
  • Volatile aroma components, non-volatile organic acids in lamina and stems of flue-cured(NC 2326) and burley ( Burley 21) were analyzed by gas chromatography and mass spectrometry, respectively. Then compositional differences of these components between lamina and stems were discussed. The contents of volatile components were higher in flue-cured than in burley tobacco, and it was also higher in lamina then in stem. The major aroma components in lamina were neophytadiene , nicotine, solanone and benzyl alcohol but those in stems were palmitic acid, neophytadiene, nicotine, solanone and phenyl ethyl acetate. On the other hand, the contents of non-volatile organic acids were higher in burley than in flue-cured tobacco, and these values of burley tobacco were higher in lamina than in stem but flue-cured tobacco were higher in stem than in lamina. The major acids in all the above four tabacco samples were malic, citric, oxalic and linolenic acid.

  • PDF

The Volatile Aroma Components of Flue-cured Tobacco - Base on the Aroma Components of Korean Flue-cured Tobacco (N. C. 2326) - (황색종 잎담배의 휘발성 향기성분에 관한 연구 한국산 황색종 잎담배 N.C.2326을 중심으로)

  • 김영회;박준영;김용태;김옥찬
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.6 no.1
    • /
    • pp.25-31
    • /
    • 1984
  • The volatile aroma components were isolated from Korean flue-cured tobacco (N.C. 2326) by using a vacuum steam distillation method. Individual aroma components were identified by GCIMS and comparison of gas chromatowaphic retention time with those of the authentic samples. Sensory analysis showed that a vacuum steam-distilled product of Flue-cured tobacco had a typical haylike, floral and fruity aroma. Among 62 compounds identified, major compounds included neophytadiene, benzyl alcohol, ethyl acetate, phenyl ethyl alcohol, ethyl alcohol, ethyl formate, acetic acid, solanone, 2-acetyl pyrrole, $\beta$-ionone epoxide, 2, 4-heptadienal (2 isomers), megastigmatrienone (4 isomers), furfural and total amounts of 13 compounds were about 80%.

  • PDF

A Model on a Bubbling Fluidized Bed Process for CO2 Capture from Flue Gas (연소기체로부터 CO2를 포집하는 기포 유동층 공정에 관한 모델)

  • Choi, Jeong-Hoo;Youn, Pil-Sang;Kim, Ki-Chan;Yi, Chang-Keun;Jo, Sung-Ho;Ryu, Ho-Jung;Park, Young-Cheol
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.516-521
    • /
    • 2012
  • This study developed a simple model to investigate effects of important operating parameters on performance of a bubbling-bed adsorber and regenerator system collecting $CO_2$ from flue gas. The chemical reaction rate was used with mean particles residence time of a reactor to determine the extent of conversion in both adsorber and regenerator reactors. Effects of process parameters - temperature, gas velocity, solid circulation rate, moisture content of feed gas - on $CO_2$ capture efficiency were investigated in a laboratory scale process. The $CO_2$ capture efficiency decreased with increasing temperature or gas velocity of the adsorber. However, it increased with increasing the moisture content of the flue gas or the regenerator temperature. The calculated $CO_2$ capture efficiency agreed to the measured value reasonably well. However the present model did not agree well to the effect of the solid circulation rate on $CO_2$ capture efficiency. Better understanding on contact efficiency between gas and particles was needed to interpret the effect properly.