• Title/Summary/Keyword: Fluctuating temperature

Search Result 89, Processing Time 0.03 seconds

Matched Field Processing Experiment in the East Sea of Korea Characterized by Short Period Fluctuating Temperature: MAPLE 0310 (수온의 단주기 변동이 있는 동해에서의 정합장처리 실험 : MAPLE 0310)

  • Kim Seongil;Hong Jun-Suk;Kim Eui-Hyung;Kim Young-Gyu;Park Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.317-324
    • /
    • 2005
  • Detection and localization of a quiet target in shallow water environments is a challenging problem because of the complicated acoustic Propagation and the Prevalence of loud surface ship interference. Matched Field Processing (MFP) can help address the concern by using a Propagation model to determine the steering vectors, thus Providing optimal away gain and localization accuracy. However, Performance of MFP have yet realized in practice, for several reasons. The most important limitation is that precise information on the underwater environments is generally not available. To examine the Performance of MFP in the East Sea of Korea, we have accomplished a series of matched acoustic Properties and localization experiment (MAPLE). We analyzed the array data measured from MAPLE which is accomplished using a vertical line array and a towed acoustic source off the east cost of Korea in Oct. 2003. We localized the acoustic source using MFP. It is well known that the temperature structure in the experimental site is affected by the short period fluctuation such as internal wave. In this paper, it is found that the sidelobe level on the MFP ambiguity surface is increased being affected by the short period fluctuation.

Characteristics of chemical environment by changing temperature at the surface layer in the northeast Equatorial Pacific (북동적도태평양 표층 수온변화에 따른 화학적 환경 특성)

  • Son Seung-Kyu;Hyun Jung-Ho;Park Cheong-Kee;Chi Sang-Bum;Kim Ki-Hyune
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.1
    • /
    • pp.24-37
    • /
    • 2001
  • Physical and chemical properties of the northest Equatorial Pacific between 5° and 12° N along 131.5 °W wore investigated in association with changes in water column structures during the summer seasons of 1998 and 1999. Climatic disturbances such as El Nino and La Nina, should have affected this area during the study Period. In 1998, a thermocline where temperature rapidly decrease with depth, was formed at 90~110 m water depth. Nutrient depicting areas, specially for nitrate+nitrite and phosphate, or oligotrophic regions were extended down to approximately 100 m depth, which coincided with the surface mixed layer depth. However, in 1999, a very fluctuating thermocline was observed with latitudes. As a result of changes in the water column structures, nutrient concentrations also showed fluctuation parallel to the changes in other physical parameters. In the photic zone, depth integrated nitrogen and phosphorus values were 34 gN/m², 7 gP/m² in 1998 and 130 gN/m², 18 gP/m² in 1999, respectively. The results indicated that nitrogen (96 gN/m²) and phosphorus (11 gP/m²) are supported by up-welling and down-welling phenomena with convergence and divergence in the study area.

  • PDF

Evaluation of International Quality Control Procedures for Detecting Outliers in Water Temperature Time-series at Ieodo Ocean Research Station (이어도 해양과학기지 수온 시계열 자료의 이상값 검출을 위한 국제 품질검사의 성능 평가)

  • Min, Yongchim;Jun, Hyunjung;Jeong, Jin-Yong;Park, Sung-Hwan;Lee, Jaeik;Jeong, Jeongmin;Min, Inki;Kim, Yong Sun
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.229-243
    • /
    • 2021
  • Quality control (QC) to process observed time series has become more critical as the types and amount of observed data have increased along with the development of ocean observing sensors and communication technology. International ocean observing institutions have developed and operated automatic QC procedures for these observed time series. In this study, the performance of automated QC procedures proposed by U.S. IOOS (Integrated Ocean Observing System), NDBC (National Data Buy Center), and OOI (Ocean Observatory Initiative) were evaluated for observed time-series particularly from the Yellow and East China Seas by taking advantage of a confusion matrix. We focused on detecting additive outliers (AO) and temporary change outliers (TCO) based on ocean temperature observation from the Ieodo Ocean Research Station (I-ORS) in 2013. Our results present that the IOOS variability check procedure tends to classify normal data as AO or TCO. The NDBC variability check tracks outliers well but also tends to classify a lot of normal data as abnormal, particularly in the case of rapidly fluctuating time-series. The OOI procedure seems to detect the AO and TCO most effectively and the rate of classifying normal data as abnormal is also the lowest among the international checks. However, all three checks need additional scrutiny because they often fail to classify outliers when intermittent observations are performed or as a result of systematic errors, as well as tending to classify normal data as outliers in the case where there is abrupt change in the observed data due to a sensor being located within a sharp boundary between two water masses, which is a common feature in shallow water observations. Therefore, this study underlines the necessity of developing a new QC algorithm for time-series occurring in a shallow sea.

Effects of Packaging and Storage Temperature on Quality during Storage of Mungbean Sprouts (숙주나물의 저장 중 품질에 미치는 포장 및 저장온도의 영향)

  • Cho Sook-Hyun;Lee Sang-Dae;Choi Yong-Jo;Kim Nak-Goo;Kang Jin-Ho;Cho Sung-Hwan
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.522-528
    • /
    • 2005
  • Effects of packaging and storage temperature on the quality and shelf life of mungbean sprouts(vigna radiata (L.) Wilczek) were studied Mungbean sprouts were packaged in polypropylene films(PP) and oriented polypropylene films(OPP) with 200 g, 250 g, and 300 g and stored at $4^{\circ}C,\;8^{\circ}C$ and $12^{\circ}C$, respectively. The deterioration of quality of mungbean sprouts during storage was caused by wilting of hypocotyl, abscission of cotyledon and softening of tissue. Total weight loss never exceeded $1\%$ and no visible signs of shrivelling of mungbean sprouts were observed. At $4^{\circ}C,\;30{\mu}m$ of OPP film per 250 g mungbean sprouts provided the optimal atmosphere composition(i.e. $3\%\;\O_2\;and\;5\%\;CO_2$). A shelf life of 6 days was achieved with these conditions. Hardness of hypocotyl, when deterioration in freshness began, was about 1,027.2 g when considerably deteriorated Hunter b value was 13 in deteriorated hypocotyl, vs. 11 for hypocotyl of fresh mungbean sprouts was accelerated by fluctuating storage temperature by the increment of storage time. It also was found that the optimum shelf life period was estimated to be 6, 2 and 2 days for 4, 8 and $12^{\circ}C$, respectively.

Possibility of Soil Solarization in Korea (한국(韓國)에 있어서 태양열(太陽熱)을 이용(利用)한 토양소독(土壤消毒)의 가능성(可能性))

  • Ki, Kye-Un;Kim, Ki-Chung
    • Korean journal of applied entomology
    • /
    • v.24 no.2 s.63
    • /
    • pp.107-114
    • /
    • 1985
  • This experiment was performed to see the possibility if soil-borne disease in green house can be controlled by soil solarization in Korea. Thermal death profiles of propagules of some soil-borne fungi, Fusarium oxysporum f. lycopersici, Fusarium oxysporum f. niveum, Rhizoctonia salani, Sclerotinia sclerotiorum, Sclerotium rolfsii and Pythium debaryanum, were obtained under the conditions in water-suspension and in soil. Except Pythium debaryanum, all the fungal units in water-suspension that were colonized on barley grains lost a viability within 7 days in water bath at $45^{\circ}C$. When the soil in test tubes in which barley grains infected with the fungi were also buried all the fungi tested including Pythium debaryanum were completely killed within 7 days in water bath at $45^{\circ}C$. From July to August in Korea, soil temperature at depth of 5cm and 15cm within tunnel in plastic house reached $38^{\circ}C\;to\;57^{\circ}C$ and $40^{\circ}C\;to\;47^{\circ}\C$, in 1982 and 1983 respectively. Even at 15cm depth, soil temperature were kept over $43^{\circ}C$ for 12 hours a day. Adiabatic material set under ground or under mulching with the transparent polyethylene-film on the soil surface had a boostering effect for higher soil-temperature and longer duration. Fungi buried in adiabatic block of the soil in plastic house were completely killed at 15cm depth 14 days after, and at 20cm depth 21 days after soil solarization. The exposure of the pathogens to fluctuating temperature was much more effective than to constant. From the above results, soil-borne diseases may be effectively controlled by soil solarization in the closed plastic house in hot summer season in Korea.

  • PDF

CO2 Methanation Characteristics over Ni Catalyst in a Pressurized Bubbling Fluidized Bed Reactor (가압 기포 유동층 반응기에서의 Ni계 촉매 CO2 메탄화 특성 연구)

  • Son, Seong Hye;Seo, Myung Won;Hwang, Byung Wook;Park, Sung Jin;Kim, Jung Hwan;Lee, Do Yeon;Go, Kang Seok;Jeon, Sang Goo;Yoon, Sung Min;Kim, Yong Ku;Kim, Jae Ho;Ryu, Ho Jeong;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.871-877
    • /
    • 2018
  • Storing the surplus energy from renewable energy resource is one of the challenges related to intermittent and fluctuating nature of renewable energy electricity production. $CO_2$ methanation is well known reaction that as a renewable energy storage system. $CO_2$ methanation requires a catalyst to be active at relatively low temperatures ($250-500^{\circ}C$) and selectivity towards methane. In this study, the catalytic performance test was conducted using a pressurized bubbling fluidized bed reactor (Diameter: 0.025 m and Height: 0.35 m) with $Ni/{\gamma}-Al_2O_3$ (Ni70%, and ${\gamma}-Al_2O_3$30%) catalyst. The range of the reaction conditions were $H_2/CO_2$ mole ratio range of 4.0-6.0, temperature of $300-420^{\circ}C$, pressure of 1-9 bar, and gas velocity ($U_0/U_{mf}$) of 1-5. As the $H_2/CO_2$ mole ratio, temperature and pressure increased, $CO_2$ conversion increases at the experimental temperature range. However, $CO_2$ conversion decreases with increasing gas velocity due to poor mixing characteristics in the fluidized bed. The maximum $CO_2$ conversion of 99.6% was obtained with the operating condition as follows; $H_2/CO_2$ ratio of 5, temperature of $400^{\circ}C$, pressure of 9 bar, and $U_0/U_{mf}$ of 1.4-3.

The Paradox of the Plankton (플랑크톤 패러독스)

  • Lee, Hak Young;Moon, Sung-Gi;Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.601-606
    • /
    • 2015
  • Hutchinson (1961) proposed that the large number of species in most plankton communities is remarkable in review of the competitive exclusion principle, which suggests that in homogeneous, well-mixed environments species that compete for the same resources cannot coexist. The principle of competitive exclusion would lead us to conclude that only a few species could coexist in such circumstances. Nevertheless, numerous competing species in most natural habitats are able to coexist, while generally only few resources (niches) limit these communities. It is coined “the paradox of plankton” by Hutchinson. We reviewed some literature of the proposed solutions and give a brief overview of the mechanisms proposed so far. The proposed mechanisms that we discuss mainly include spatial and temporal heterogeneity in physical and biological environment, externally imposed or self-generated spatial segregation, horizontal mesoscale turbulence of ocean characterized by coherent vortices, oscillation and chaos generated by several internal and external causes, stable coexistence and compensatory dynamic under fluctuating temperature in resource competition, and finally the role of toxin-producing phytoplankton in maintaining the coexistence and biodiversity of the overall plankton populations. Especially we sited Roy and Chattopadhyay’s reviews and their toxin-producing hypothesis by phytoplankton. This review may be some information to study plankton communities and effect to put the solutions to the paradox that have been proposed over the years into perspective.

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.

A Study on the Effects of Meterological Factors on the Distribution of Agricultural Products: Focused on the Distribution of Chinese Cabbages (기상요인이 농산물 유통에 미치는 영향에 관한 연구: 배추 유통 사례를 중심으로)

  • Lee, Hyunjoung;Hong, Jinhwan
    • Journal of Distribution Research
    • /
    • v.17 no.5
    • /
    • pp.59-83
    • /
    • 2012
  • Agriculture is a primary industry that influenced by the weather or meterological factors more than other industry. Global warming and worldwide climate changes, and unusual weather phenomena are fatal in agricultural industry and human life. Therefore, many previous studies have been made to find the relationship between weather and the productivity of agriculture. Meterological factors also influence on the distribution of agricultural product. For example, price of agricultural product is determined in the market, and also influenced by the weather of the market. However, there is only a few study was made to find this link. The objective of this study is to investigate the effects of meterological factors on the distribution of agricultural products, focusing on the distribution of chinese cabbages. Chinese cabbage is a main ingredient of Kimchi, and basic essential vegetable in Korean dinner table. However, the production of chinese cabbages is influenced by weather and very fluctuating so that the variation of its price is so unstable. Therefore, both consumers and farmers do not feel comfortable at the unstable price of chinese cabbages. In this study, we analyze the real transaction data of chinese cabbage in wholesale markets and meterological factors depending on the variety and geography. We collect and analyze data of meterological factors such as temperatures, humidity, cloudiness, rainfall, snowfall, wind speed, insolation, sunshine duration in producing and consuming region of chinese cabbages. The result of this study shows that the meterological factors such as temperature and humidity significantly influence on the volume and price of chinese cabbage transaction in wholesale market. Especially, the weather of consuming region has greater correlation effects on transaction than that of producing region in all types of chinese cabbages. Among the whole agricultural lifecycle of chinese cabbages, 'seeding - harvest - shipment - wholesale', meterological factors such as temperature and rainfall in shipment and wholesale period are significantly correlated with transaction volume and price of crops. Based on the result of correlation analysis, we make a regression analysis to verify the meterological factors' effects on the volume and price of chines cabbage transaction in wholesale market. The results of stepwise regression analysis are shown in

    and
    . The type of chinese cabbages are categorized by 5 types, i.e. alpine, gimjang for winter, spring, summer, and winter crop, and all of the regression models are shown significant relationship. In addition, meterological factors in shipment and wholesale period are entered more in regression model than those in seeding and harvest period. This result implies that weather in consuming region is also important in the distribution of chinese cabbages. Based on the result of this study, we find several implications and recommendations for policy makers of agricultural product distribution. The goal of agricultural product distribution policy is to insure proper price and production cost for farmers and provide proper price and quality, and stable supply for consumers. Therefore, coping with the uncertainty of weather is very essential to make a fruitful effect of the policy. In reality, very big part of consumer price of chinese cabbage is made up of the margin of intermediaries, because they take the risk. In addition, policy makers make efforts for farmers to utilize AWIS (Agricultural Weather Information System). In order to do that, it should integrate the relevant information including distribution and marketing as well as production. Offering a consulting service to farmers about weather management is also expected to be a good option in agriculture and weather industry. Reflecting on the result of this study, the distribution authorities can offer the guideline for the timing and volume of harvest, and it is expected to contribute to the stable equilibrium of supply and demand of agricultural products.

  • PDF