Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.5.601

The Paradox of the Plankton  

Lee, Hak Young (Department of Biological Sciences, Chonnam National University)
Moon, Sung-Gi (Department of Biology, Kyungsung University)
Huh, Man-Kyu (Department of Molecular Biology, Dongeui University)
Publication Information
Journal of Life Science / v.25, no.5, 2015 , pp. 601-606 More about this Journal
Abstract
Hutchinson (1961) proposed that the large number of species in most plankton communities is remarkable in review of the competitive exclusion principle, which suggests that in homogeneous, well-mixed environments species that compete for the same resources cannot coexist. The principle of competitive exclusion would lead us to conclude that only a few species could coexist in such circumstances. Nevertheless, numerous competing species in most natural habitats are able to coexist, while generally only few resources (niches) limit these communities. It is coined “the paradox of plankton” by Hutchinson. We reviewed some literature of the proposed solutions and give a brief overview of the mechanisms proposed so far. The proposed mechanisms that we discuss mainly include spatial and temporal heterogeneity in physical and biological environment, externally imposed or self-generated spatial segregation, horizontal mesoscale turbulence of ocean characterized by coherent vortices, oscillation and chaos generated by several internal and external causes, stable coexistence and compensatory dynamic under fluctuating temperature in resource competition, and finally the role of toxin-producing phytoplankton in maintaining the coexistence and biodiversity of the overall plankton populations. Especially we sited Roy and Chattopadhyay’s reviews and their toxin-producing hypothesis by phytoplankton. This review may be some information to study plankton communities and effect to put the solutions to the paradox that have been proposed over the years into perspective.
Keywords
Competitive exclusion; Hutchinson; paradox of plankton; plankton communities; Roy and Chattopadhyay;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arneodo, A., Coullet, P., Peyraud, J. and Tresser, C. 1982.Strange attractors in Volterra equations for species in competition. J. Math. Biol. 14, 153-157.   DOI
2 Atkinson, W. D. and Shorrocks, B. 1981. Competition on a divided and ephemeral resource: a simulation model. J. Anim. Ecol. 50, 461-471.   DOI
3 Bolker, B., Holyoak, M., Krivan, V., Rowe, L. and Schmitz, O. 2003. Connecting theoretical and empirical studies of trait mediated interactions. Ecology 84, 1101-1114.   DOI
4 Bracco, A., Provenzale, A. and Scheuring, I. 2000. Mesoscale vortices and the paradox of the plankton. Proc. R. Soc. Lond. B. 267, 1795-1800.   DOI
5 Descamps-Julien, B. and Gonzalez, A. 2005. Stable coexistence in a fluctuating environment: an experimental demonstration. Ecology 86, 2815-2824.   DOI
6 Doveri, F. M., Scheffer, S., Rinaldi, S., Muratori, S. andKuznetsov, Y. A. 1993. Seasonality and chaos in a plankton-fish model. Theor. Popul. Biol. 43, 159-183.   DOI
7 Ebenhöh, W. 1988. Coexistence of an unlimited number of algal species in a model system. Theor. Popul. Biol. 34, 130-144.   DOI
8 Gragnani, A., Scheffer, M. and Rinaldi, S. 1999. Top–down control of cynobacteria: a theoretical analysis. Am. Nat. 153, 59-72.   DOI
9 Malchow, H. 1993. Spatio-temporal pattern formation in nonlinear non-equilibrium plankton dynamics. Proc. R. Soc. B. 251, 103-109.   DOI
10 Stanca, E., Roselli, L. Cellamare, M. and Basset, A. 2013. Phytoplankton composition in the coastal Magnetic Island lagoon, Western Pacific Ocean (Australia) TWB, Transit. Waters Bull. 7, 145-158.
11 Tilman, D. 1981. Test of resource competition theory using four species ok Lake Michigan algae. Ecology 62, 802-815.   DOI
12 Waldrop, M. P. and Firestone, M. K. 2004. Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67, 235-248.   DOI
13 Williamson, C. E., Sanders, R. W., Moeller, R. E. andStutzman, P. L. 1996. Utilization of subsurface food resources for zooplankton reproduction: Implications for diel vertical migration theory. Limnol. Oceanogr. 41, 224-233.   DOI
14 Roy, S. and Chattopadhyay, J. 2007b. Toxin-alleopathy among phytoplankton species prevents competition exclusion. J. Biol. Syst. 15, 1-21.   DOI
15 Scheffer, M., Rinaldi, S., Huisman, J. and Weissing, F. J.2003. Why phytoplankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491, 9-18.   DOI
16 Malchow, H. 2000. Non-equilibrium spatio-temporal patterns in models of non-linear plankton Dynamics. Fresh. Biol. 45, 239-251.   DOI
17 Riley, G. A, Stommel, H. and Bumpus, D. F. 1949. Quantitative ecology of the plankton of the western North Atlantic. Bull Bingham Oceanogr Coll. 12, 1-169.
18 Petrovskii, S. V. and Blackshaw, R. 2003. Behaviourally structured populations persist longer under harsh environmental conditions. Ecol. Lett. 6, 455-462.   DOI
19 Reynolds, C. S. 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249, 157-171.   DOI
20 Richerson, P., Armstrong, R. and Goldman, C. R. 1970.Contemporaneous disequilibrium, a new hypothesis to explain the "paradox of the plankton". Proc. Natl. Acad. Sci. USA 67, 1710-1714.   DOI
21 Roy, S., Alam, S. and Chattopadhyay, J. 2006. Competitive effects of toxin-producing phytoplankton on the overall plankton population in the Bay of Bengal. Bull. Math. Biol. 68, 2303-2320.   DOI
22 Roy, S. and Chattopadhyay, J. 2007a. Towards a resolution of ‘the paradox of the plankton’: A brief overview of the proposed mechanisms. Ecological Complexity 4, 26-33.   DOI
23 MacArther, R. H. 1958. Population ecology of some warblers of northeastern coniferous forests. Ecology 39, 599-619.   DOI
24 McCauley, S. J., Rowe, L. and Fortin, M. J. 2011. The deadlyeffects of "nonlethal" predators. Ecology 92, 2043-2048.   DOI
25 Hassel, M. P., Comins, H. N. and May, R. M., 1994. Species coexistence and self-organizing spatial dynamics. Hydrobiologia 344, 87-102.
26 Hardin, G. 1960. The competitive exclusion principle. Science 131, 1292-1298.   DOI
27 Hairston, N. G. 1959. Species abundance and community organization. Ecology 40, 404-416.   DOI
28 Huisman, J. and Weissing, F. J. 1999. Biodiversity of plankton by species oscillation and chaos. Nature 402, 407-410.   DOI
29 Huisman, J., Van Oostveen, P. and Weissing, F. J. 1999. Species dynamics in phytoplankton blooms: incomplete mixing and competition for light. Am. Nat. 154, 46-68.   DOI
30 Huisman, J., Johansson, A. M., Folmer, E. O. and Weissing, F. J. 2001. Towards a solution of the plankton paradox: the importance of physiology and life history. Ecol. Lett. 4, 408-411.   DOI
31 Huisman, J., Pham Thi, N. N., Karl, D. M. and Sommeijer, B. 2006. Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature 439, 322-325.   DOI
32 Hutchinson, G. E. 1961. The paradox of the plankton. Am. Nat. 95, 137-145.   DOI   ScienceOn
33 Kozlowsky-Suzuki, B., Karjalainen, M., Lehtiniemi, M.,Engström-Öst, J., Koski, M. and Carlsson, P. 2003. Feeding, reproduction and toxin accumulation by the copepods Acartia bifilosa and Eurytenora affinis in the presence of the toxic cynobacterium Nodularia Spumigena. Mar. Ecol. Prog. 249, 237-249.   DOI
34 Krivan, V. and Schmitz, O. J. 2004. Trait and density mediated indirect interactions in simple food webs. Oikos 107, 239-250.   DOI
35 Levins, R. 1979. Coexistence in a variable environment. Am. Nat. 114, 765-783.   DOI