• 제목/요약/키워드: Flow-through Model

검색결과 2,786건 처리시간 0.034초

유동해석을 통한 터보차저 형상 연구 (A Study on the Configuration of Turbo Charger through Flow Analysis)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.34-38
    • /
    • 2018
  • Recently, the turbo charger has become an important part because it yields little displacement and high power while downsizing the engine's fuel ratio for environmental purposes. In this study, flow analysis was conducted to form the basis of data regarding the best efficiency. The axial displacement was changed from none to 25 mm by controlling the configuration of the turbo charger and the flow analyses were compared with each other. The maximum rate of the outlet of model 1 was 46.36 m/s and the maximum pressure of model 4 was 0.761946 Pa. The maximum flow rate of model 4 was 0.000187650 kg/s. This study's result should aid in the effective design of a turbo charger with high performance.

비정렬 유한 체적법을 이용한 횡류 홴 유동장 해석 (Prediction of Cross Flow Fan Flow Using an Unstructured Finite Volume Method)

  • 강동진;배상수
    • 한국유체기계학회 논문집
    • /
    • 제9권4호
    • /
    • pp.27-35
    • /
    • 2006
  • A Navier-Stokes code has been developed to simulate the flow through a cross flow fan. It is based on an unstructured finite volume method and uses moving grid technique to model the rotation of the fan. A low Reynolds number turbulence model is used to calculate eddy viscosity. The basic algorithm is SIMPLE. Numerical simulations over a wide range of flow rate are carried out to validate the code. Comparison of all numerical solutions with experimental data confirms the validity of the present code. Present numerical solutions show a noticeable improvement over a previous numerical method which is based on a model of body force to simulate the rotation of the impeller.

PDMS 마이크로채널 유체유동에 미치는 표면거칠기에 관한 연구 (Effects of the surface roughness on Flow Characteristics in PDMS Microchannels)

  • 김영민;김우승;이상훈;백주열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1999-2004
    • /
    • 2004
  • Experiments were conducted to investigate the flow characteristics of water through rectangular PDMS microchannels with a hydraulic diameter ranging from 66.67 to 200 ${\mu}m$. In the experiments, the flow rate and pressure drop across the microchannels were measured at steady states. The experimental results were compared with the predictions from the conventional laminar flow theory. A significant difference between the experimental data and the theoretical predictions was found. Experimental results indicate that the pressure gradient and flow friction in microchannels are higher than those from the conventional laminar flow theory. This may be attributed to the fact that there exists effect of surface roughness of the microchannels. In this study, a surface roughness model is implemented to interpret the experimental data. A good agreement between the experimental data and the numerical predictions with a surface roughness model were found.

  • PDF

난류 유동장에 대한 CFDS 기법의 수치적 연구 (Numerical study of CEDS scheme for turbulent flow)

  • 문성목;김종암;노오현;홍승규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.23-26
    • /
    • 2002
  • An evaluation of one algebraic and two one-equation eddy viscosity-transport turbulence closure models as implemented to the CFDS(Characteristic Flux Difference Splitting) scheme is presented for the efficient computation of the turbulent flow. Comparisons of Baldwin-Lomax model as algebraic turbulence model and Baldwin-Barth and Spalart-Allmaras model as one-equation turbulence model are presented for three test cases for 3-dimensional flow. The numerical result of the CFDS schem is examined through comparison with the experimental data.

  • PDF

갈수기(渴水期) 하천(河川)에서의 오염물질(汚染物質)의 확산(擴散) 및 이동(移動) (Low Flow Pollutant Transport in Natural Rivers)

  • 서일원
    • 상하수도학회지
    • /
    • 제7권1호
    • /
    • pp.29-36
    • /
    • 1993
  • The complex nature of low flow mixing in natural channels has been investigated using both laboratory experiments and the numerical solution of a proposed mathematical model that is based on a set of mass balance equations describing the mixing and mass exchange mechanisms. Laboratory experiments, which involved collection of channel geometry, hydraulic, and dye dispersion test data, were conducted in a model of four pool and riffle sequences in a 49-m long tilting flume. The experimental results show that flow over the model pool-riffle sequences is highly non-uniform. Concentration-time curves are significantly skewed with long tails. Comparison between measured and predicted concentration-time curves shows good agreement in the general shape, peak concentration and time to peak. The proposed model shows significant improvement over the conventional one-dimensional dispersion model in predicting natural mixing processes in open channels under low flow conditions through pools and riffles.

  • PDF

관류 익형송풍기의 유동해석에 대한 난류모델 및 수치도식의 영향에 관한 연구 (A Study on the Effects of Turbulence Model and Numerical Scheme on Analysis of the Flow through Airfoil Type Tubular Fan)

  • 문정주;서성진;김광용
    • 한국유체기계학회 논문집
    • /
    • 제6권1호
    • /
    • pp.23-29
    • /
    • 2003
  • Three-dimensional flow through a tubular centrifugal fan with airfoil type blades is analyzed, and the effects of turbulence model and numerical scheme on the results are investigated. Standard $k-{\epsilon}$ model and k - w model are tested as turbulence closures. The numerical schemes for convection terms, i.e., Upwind Differencing Scheme (UDS), Mass Weighted Skewed upstream differencing scheme (MWS), Linear Profile Skewed upstream differencing scheme (LPS), and Modified Linear Profile Skewed upstream differencing scheme (MLPS) are also tested, and the performances of these schemes coupled with two turbulence models are evaluated. The static pressure distributions are compared with experimental data obtained in this work, which shows that the $k-{\epsilon}$ model gives better results than the k-w model.

자동차 스포일러의 형상에 따른 유동해석 (Flow Analysis due to the Configuration of Automotive Spoiler)

  • 한문식;조재웅
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.677-683
    • /
    • 2016
  • In this study, the pressures due to air resistances on the models of 1, 2, 3 and 4 as the automotive bodies grafted on various spoilers are investigated through the flow analysis. Model 1 has the flat type and model 2 has the shape that a flat plane is projected. Model 3 is attached with the slanted plate and model 4 has the shape that two slanted plates are installed on both sides. At the flow streams on the models of 1, 2, 3 and 4, the flow velocities are shown to become highest above the roofs of automotive bodies. The maximum flow velocities are also shown at the beginning points at the roofs of car bodies on the side planes of automotive bodies. The maximum pressures of 102,500 to 102,553 Pa as air resistances are shown at the bumpers of the front car bodies. The flow velocities on the inlet and middle planes become nearly same at the models of 1, 2, 3 and 4. But these velocities on the inlet plane at model 2 projected with the spoiler of flat plate become lower than the models of 1, 3 and 4. The air streams throughout the models become uniform at all models. The flow stream is shown most uniformly at model 2 projected with the spoiler of flat plate. But the flow stream is shown most irregularly at model 3 projected with the spoiler of slanting plate. By using the result of this flow analysis, it is thought to reduce the power of car effectively in driving by changing the configuration of automotive spoiler.

콤팩트 온수 보일러 연소실의 열전달 특성 (Heat Transfer in the Combustion Chamber for the Compact Hot-Water Boiler)

  • 조정환;서태범;김욱중;김창주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.459-464
    • /
    • 2001
  • A mathematical model has been developed to describe the turbulent and reversed flow with convective heat transfer in a cylindrical combustion chamber. By using the mathematical model for high temperature flow enables the trends in overall heat transfer rates to be predicted. The model was applied to the design of the combustion chamber. The influences of the size of air inlet and inlet velocity were investigated for process optimization. Through modelling work it is found that the heat transfer rate to the chamber wall may be enhanced by adjusting the air flow and heat transfer pattern through selecting the air inlet condition. Internal plate has less influence to the heat transfer characteristics.

  • PDF

청라지구 물순환체계내 주운수로의 흐름유발시설 설치효과 (The Effect of Flow Induction Machine in Water Circulation System of Cheongna Canal Way)

  • 김동언;최계운;박영식;윤근호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.77-81
    • /
    • 2010
  • This study carried out hydraulic model test for water circulation system in Cheongna district as part of Incheon Free Economic Zone. Canal way project of Cheongna was planned to establish for environment-friendly water circulation system, improve quality of life and diversification of traffic through using boat as a water-friendly international business city. The navigation canal, There are two intake facility in central park and it can purify water 15,000$m^3$ per day. After purify, water move to 8 facility of water culture area which supplies water in canal way. This process called water circulation system in cheongna. Also, there are several flow induction machine in canal way except south-north way. Therefore, this study will verify about validity of water circulation system's safety through hydraulic model test.

  • PDF

ESTIMATION OF LEAK RATE THROUGH CIRCUMFERENTIAL CRACKS IN PIPES IN NUCLEAR POWER PLANTS

  • PARK, JAI HAK;CHO, YOUNG KI;KIM, SUN HYE;LEE, JIN HO
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.332-339
    • /
    • 2015
  • The leak before break (LBB) concept is widely used in designing pipe lines in nuclear power plants. According to the concept, the amount of leaking liquid from a pipe should be more than the minimum detectable leak rate of a leak detection system before catastrophic failure occurs. Therefore, accurate estimation of the leak rate is important to evaluate the validity of the LBB concept in pipe line design. In this paper, a program was developed to estimate the leak rate through circumferential cracks in pipes in nuclear power plants using the Henry-Fauske flow model and modified Henry-Fauske flow model. By using the developed program, the leak rate was calculated for a circumferential crack in a sample pipe, and the effect of the flow model on the leak rate was examined. Treating the crack morphology parameters as random variables, the statistical behavior of the leak rate was also examined. As a result, it was found that the crack morphology parameters have a strong effect on the leak rate and the statistical behavior of the leak rate can be simulated using normally distributed crack morphology parameters.