• 제목/요약/키워드: Flow-control fin

검색결과 35건 처리시간 0.028초

Control of Delta-Wing Vortex by Micro-Fin-Type Leading-Edge Flap

  • Sohn, Myong-Hwan;Chung, Hyoung-Seog;Cho, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.128-136
    • /
    • 2006
  • The present study examined the effects of micro leading-edge flaps on the vortex characteristic changes of a double-delta wing through pressure measurements of the wing upper surface and PIV measurements of the wing-leeward flow region. The experimental data were collected and analyzed while changing the deflection angle of the leading-edge flaps to investigate the feasibility of using micro leading-edge flaps as flow control devices. The test results revealed that the leading edge modification could greatly alter the vortex flow pattern and the wing surface pressure of the delta wing, which suggested that the leading-edge flaps could be used as an effective device for the control of delta-wing vortex flow.

Design and Dynamic Analysis of Fish-like Robot;PoTuna

  • Kim, Eun-Jung;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1580-1586
    • /
    • 2003
  • This paper presents the design and the analysis of a "fish-like underwater robot". In order to develop swimming robot like a real fish, extensive hydrodynamic analysis were made followed by the study of biology of the fishes especially its maneuverability and propel styles. Swimming mode is achieved by mimicking fish-swimming of carangiform. This is the swimming mode of the fast motion using its tail and peduncle for propulsion. In order to generate configurations of vortices that gives efficient propulsion yawing and surging with a caudal fin has applied and in order to submerge and maintain the body balance pitching and heaving motion with a pair of pectoral fin is used. We have derived the equation of motion of PoTuna by two methods. In first method, we use the equation of motion of underwater vehicle with the potential flow theory for the power of propulsion. In second method, we apply the method of the equation of motion of UVM(Underwater Vehicle-Manipulator). Then, we compare these results.

  • PDF

열전모듈을 이용한 자동차용 1 kW급 보조 냉난방 시스템의 성능에 관한 실험적 연구 (An Experimental Study on the Supplemental Cooling and Heating Performance Using 1 kW Thermoelectric Module for Vehicle)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권5호
    • /
    • pp.224-230
    • /
    • 2014
  • The purpose of this paper is to investigate the performance of supplemental cooling and heating system equipped with the 1 kW thermoelectric module. The system consist of 96 thermoelectric modules, heat sink with louver fin and water cooling jacket which is attached on the hot side of the thermoelectric module. The cooling and heating performance test of the thermoelectric system is conducted with various conditions, such as intake voltage, air inlet temperature, air flow volume, water inlet temperature and water flow rate at calorimeter chamber in consideration of environmental conditions in realistic vehicle drive. The experimental results of a thermoelectric system shows that the cooling capacity and COP is 1.03 kW, and 1.0, and heating capacity and COP is 1.53 kW, and 1.5 respectively.

Numerical Analysis of an Air-cooled Ammonia Condenser with Plate Fins

  • Kim, Young-Il;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.104-112
    • /
    • 1998
  • Ammonia has been used as refrigerant for more than 100 years in absorption as well as in compression systems. Due to its poisonous and inflammable properties, however, its use has been mainly on heavy industrial plants in which regular maintenance is available. For these systems, condensers are generally water∼cooled. This is suitable for large systems over 20RT but is not suitable for small systems. In order to apply ammonia for a small system, it is important to adopt an air-cooled condenser. In this study, simple numerical analysis of an air-cooled condenser for an ammonia refrigeration system has been carried out. The condenser is designed as horizontal tubes with plate fins attached at the outer surface to enhance the air-side heat transfer rate. Effect of fin shape and arrangement are studied in detail. Since the local heat transfer coefficient is highest at the leading edge, heat flux is highest at the edge and decreases along the distance. Conditions of inlet air are also varied in the study and condenser length that is required for full condensation is calculated. The results show that it is important to enhance both the air-side and internal heat transfer coefficients.

  • PDF

효과적인 패널 냉각을 위한 대향류형 냉각장치의 개발 (A Development of Counter Flow Type of Cooling System for Effective Panel Cooling)

  • 이중순
    • 한국산학기술학회논문지
    • /
    • 제11권3호
    • /
    • pp.802-807
    • /
    • 2010
  • 산업용 컴퓨터를 포한한 다양한 형태의 공작기계나 자동화 시스템의 배전반이나 제어 패널을 고효율적으로 냉각시킬 수 있는 시스템은 매우 중요한 요소이다. 따라서 이러한 냉각장치는 산업용 로봇, 수치제어 공작기계 등과 같은, 다양한 산업용 시스템에 널리 사용되고 있다. 본 연구에서는 패널 내부를 순환하는 공기를 강제적으로 유동시키는 냉각방식을 채택하여 효과적인 패널 냉각을 위한 대향류형 냉각장치를 개발하였다. 본 연구를 통하여 효과적인 냉각장치를 위한 핀 어셈블리를 개발하여 제어용 패널에 적용한 결과, 기존의 시스템에 비하여 냉각 성능과 열교환율이 개선된 결과를 확인할 수 있었다. 연구에 적용된 상용의 시스템에 비해 공기의 유동량은 약 20% 정도 증가하는 현상을 보였고, 열교환량은 약 2배 이상 증가하는 현상을 확인할 수 있었다.

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

수평형 재생증발식 냉방기의 성능시험 (Performance Test for a Horizontal Regenerative Evaporative Cooler)

  • 송귀은;이대영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.621-626
    • /
    • 2006
  • Regenerative evaporative cooling is known as an environment-friendly and energy efficient cooling method. A regenerative evaporative cooler (REC) consisting of dry and wet channels is able to cool down the air stream below the inlet wet-bulb temperature. In the regenerative evaporative cooler, the cooling effect is achieved by redirecting a portion of the air flown out of the dry channel into the wet channel and spraying water onto the redirected air. In this study, a horizontal regenerative cooler is considered. In the horizontal regenerative cooler, the flow direction of evaporating water has a right angle to the flow direction of supply air. This difference was investigated with visualization technique and simplified 2-module performance test was done in a thermo-environment chamber. Optimum design configuration is changed due to the wet channel which are easily fully covered with evaporating water and block the air flow inside the channel. Applying the optimized fin configuration design with the highly wetting surface treatment, a regenerative evaporative cooler was fabricated and tested to Identify the cooling performance improvement and operation characteristics. From the experimental results at the intake condition of $32^{\circ}C$ and 50% RH, the supply temperature was measured to be around $23.4^{\circ}C$. The cooling effectiveness based on the inlet dewpoint temperature was evaluated 73% which is almost close to the design expectation.

  • PDF

전산모사에 의한 공압구동장치의 비선형 해석 (Nonlinear analysis of a pneumatic actuation system by digital simulation)

  • 조택동;신효필;문의준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1104-1109
    • /
    • 1991
  • Recently, Pneumatic Actuation System (PAS) has been used increasingly as a high performance fin-control servo actuation systems because of the special advantages of pneumatic units: primarily their low cost, small size, light weight, and tolerance to broad temperature extremes. In this study, a nonlinear model of PAS is derived through the detailed analysis of the major components in the typical system. The model includes nonlinear flow-pressure relationships of the flow through the solenoid valve openings and orifices, PWM algorithm for driving two solenoid valves as a closed-center 3-way valve for minimum gas consumption, solenoid valve dynamics, saturation, and friction. Simulation results are compared with the experimental ones for square and sinusoidal inputs to see the validity of the model. Independent of the shape and magnitude of the input signals, both results are in good agreements with minor difference.

  • PDF

Development of energy-saving devices for a full slow-speed ship through improving propulsion performance

  • Kim, Jung-Hun;Choi, Jung-Eun;Choi, Bong-Jun;Chung, Seok-Ho;Seo, Heung-Won
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권2호
    • /
    • pp.390-398
    • /
    • 2015
  • Energy-saving devices for 317K VLCC have been developed from a propulsion standpoint. Two ESD candidates were designed via computational tools. The first device WAFon composes of flow-control fins adapted for the ship wake to reduce the loss of rotational energy. The other is WAFon-D, which is a WAFon with a duct to obtain additional thrust and to distribute the inflow velocity on the propeller plane uniform. After selecting the candidates from the computed results, the speed performances were validated with model-tests. The hydrodynamic characteristics of the ESDs may be found in improved hull and propulsive efficiencies through increased wake fraction.