• Title/Summary/Keyword: Flow-Structure Interactions

Search Result 104, Processing Time 0.032 seconds

Numerical Model of Heat Diffusion and Evaporation by LNG Leakage at Membrane Insulation (LNG 화물창 방열재 균열에 따른 액화천연가스의 확산 및 온도 예측을 위한 수치 모델)

  • Lee, Jang Hyun;Kim, YoonJo;Hwang, Se Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.517-526
    • /
    • 2014
  • The leakage of cryogenic LNG through cracks in the insulation membrane of an LNG carrier causes the hull structure to experience a cold spot as a result of the heat transfer from the LNG. The hull structure will become brittle at this cold spot and the evaporated natural gas may potentially lead to a hazard because of its flammability. This paper presents a computational model for the LNG flow and heat diffusion in an LNG insulation panel subject to leakage. The temperature distribution in the insulation panel and the speed of gas diffusion through it are simulated to assess the safety level of an LNG carrier subject that experiences a leak. The behavior of the leaked LNG is modeled using a multiphase flow that considers the mixture of liquid and gas. The simulation model considers the phase change of the LNG, gas-liquid multiphase interactions in the porous media, and accompanying rates of heat transfer. It is assumed that the NO96-GW membrane storage is composed of glass wool and plywood for the numerical simulation. In the numerical simulation, the seepage, heat diffusion, and evaporation of the LNG are investigated. It is found that the diffusion speed of the leakage is very high to accelerate the evaporation of the LNG.

Effect of water jetting parameters on the penetration behavior of jack-up spudcan in surficial sand condition

  • Han, Dong-Seop;Kim, Seung-Jun;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-19
    • /
    • 2015
  • The water jetting system for a jack-up spudcan requires the suitable design considering the platform/spudcan particulars, environments, and soil conditions, either the surficial clay or surficial sand. The usage of water jetting depends critically on soil conditions. The water jetting is usually used for the smooth and fast extraction of the spudcan in the surficial clay condition. It is also required for inserting spudcan up to the required depth in the surficial sand condition, which is investigated in this paper. Especially, it should be very careful to use the water jetting during an installation of spudcan in the surficial sand condition, because there is a risk of overturning accident related to the punch-through. Therefore, in this study, the effect of water jetting flow rate and time on the change of soil properties and penetration resistance is analyzed to better understand their interactions and correlations when inserting the spudcan with water jetting in surficial sand condition. For the investigation, a wind turbine installation jack-up rig (WTIJ) is selected as the target platform and the multi layered soil (surficial sand overlaying clays) is considered as the soil condition. The environmental loading and soil-structure interaction (SSI) analysis are performed by using CHARM3D and ANSYS. This kind of investigation and simulation is needed to decide the proper water jetting flow rate and time of spudcan for the given design condition.

Analysis of Hull-Induced Flow Noise Characteristics for Wave-Piercing Hull forms (파랑관통형 선형의 선체유기 유동소음특성에 관한 연구)

  • Choi, Woen-Sug;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seo, Jeong-Hwa;Rhee, Shin-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.619-627
    • /
    • 2018
  • As ships become faster, larger and are required to meet higher standards, the importance of flow noise is highlighted. However, unlike in the aeroacoustics field for airplanes and trains (where flow noise is considered in design), acoustics are not considered in the marine field. In this study, analysis procedures for hull-induced flow noise are established to investigate the flow noise characteristics of a wave-piercing hull form that can negate the effect of wave-breaking. The principal mechanisms behind hull-induced flow noise are fluid-structure interactions between complex flows underneath the turbulent boundary layer and the hull. Noise induced by the turbulent boundary layer was calculated using wall pressure fluctuation and energy flow analysis methods. The results obtained show that noise characteristics can be distinguished by frequency range and hull region. Also, the low-frequency range is affected by hull forms such that it is correlated with ship speed.

Self-Burial Structure of the Pipeline with a Spoiler on Seabed (해저지반에 설치된 스포일러 부착형 파이프라인의 자가매설 기능분석)

  • Lee, Woo-Dong;Hur, Dong-Soo;Kim, Han-Sol;Jo, Hyo-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.310-319
    • /
    • 2016
  • If a spoiler was attached to the pipeline investigated in a previous study, a strong flow and vortex at the lower part caused scouring and thus an asymmetric pressure distribution, which assisted in the analysis of the self-burial structure where a down force was applied to the pipe. However, only the fluid-pipe interaction was considered, excluding the medium (seabed), when practically burying the pipeline. Thus, this study applied a numerical model (LES-WASS-2D) to directly analyze the non-linear interactions among the fluid, pipe, and seabed in order to perform numerical simulations of a pipeline with a spoiler installed on the seabed. This allowed the self-burial mechanism of a pipeline with a spoiler to be analyzed in the same context as the previous study that considered only the fluid-pipe interaction. However, when a pipeline was installed on the seabed, a strong flow and vortex were found at the front of the bottom, and a spoiler accelerated the fluid resistances. This hydraulic phenomenon will reinforce the scouring and down force on the pipeline. In the general consideration of the numerical analysis results by the specifications and arrangements of the spoiler, a pipeline with a spoiler was found to be the most effective for the self-burial function.

3D SIMULATIONS OF RADIO GALAXY EVOLUTION IN CLUSTER MEDIA

  • O'NEILL SEAN M.;SHEARER PAUL;TREGILLIS IAN L.;JONES THOMAS W.;RYU DONGSU
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.605-609
    • /
    • 2004
  • We present a set of high-resolution 3D MHD simulations exploring the evolution of light, supersonic jets in cluster environments. We model sets of high- and low-Mach jets entering both uniform surroundings and King-type atmospheres and propagating distances more than 100 times the initial jet radius. Through complimentary analyses of synthetic observations and energy flow, we explore the detailed interactions between these jets and their environments. We find that jet cocoon morphology is strongly influenced by the structure of the ambient medium. Jets moving into uniform atmospheres have more pronounced backflow than their non-uniform counterparts, and this difference is clearly reflected by morphological differences in the synthetic observations. Additionally, synthetic observations illustrate differences in the appearances of terminal hotspots and the x-ray and radio correlations between the high- and low-Mach runs. Exploration of energy flow in these systems illustrates the general conversion of kinetic to thermal and magnetic energy in all of our simulations. Specifically, we examine conversion of energy type and the spatial transport of energy to the ambient medium. Determination of the evolution of the energy distribution in these objects will enhance our understanding of the role of AGN feedback in cluster environments.

Numerical wave interaction with tetrapods breakwater

  • Dentale, Fabio;Donnarumma, Giovanna;Carratelli, Eugenio Pugliese
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.800-812
    • /
    • 2014
  • The paper provides some results of a new procedure to analyze the hydrodynamic aspects of the interactions between maritime emerged breakwaters and waves by integrating CAD and CFD. The structure is modeled in the numerical domain by overlapping individual three-dimensional elements (Tetrapods), very much like the real world or physical laboratory testing. Flow of the fluid within the interstices among concrete blocks is evaluated by integrating the RANS equations. The aim is to investigate the reliability of this approach as a design tool. Therefore, for the results' validation, the numerical run-up and reflection effects on virtual breakwater were compared with some empirical formulae and some similar laboratory tests. Here are presented the results of a first simple validation procedure. The validation shows that, at present, this innovative approach can be used in the breakwater design phase for comparison between several design solutions with a significant minor cost.

Optimum Chycle Time and Delay Caracteristics in Signalized Street Networks (계통교통신호체계에서의 지체특성과 최적신호주기에 관한 연구)

  • 이광훈
    • Journal of Korean Society of Transportation
    • /
    • v.10 no.3
    • /
    • pp.7-20
    • /
    • 1992
  • The common cycle time for the linded signals is usually determined for the critical intersecion, just because the cpacity of a signalized intersection depends on the cycle time. This may not be optimal since the interactions between the flow and the spatial structure of the route or the area are disregarded in this case. It is common to separate the total delay incurred at signals into two parts, a deterministic or uniform delay and a stochastic or random delay. The deterministic delays and the stochastic delays on the artery particularly related to signal cycle time. For this purpose a microscopic simulation technique is used to evaluate deterministic delays, and a macroscopic simulation technique based on the principles of Markov chains is used to evaluate stochastic delays with over flow queue. As a result of investigating the relations between deterministic delays and cycle time in the various circumstances of spacing of signals and traffic volume. As for stochastic delays the resalts of comparisons of the macroscopic simulation and Newell's approximation with the microscopic simulation indicate that the former is valid for the degree of saturation less than 0.95 and the latter is for that above 0.95. Newell's argument that the total stochastic delay on an arterial is dominated by that at or caused by critical intersection is certified by the simulation experiments. The comprehensive analyses of the values of optimal cycle time with various conditions lead to a model. The cycle time determined by this model shows to be approximately 70% of that calculated by Webster's.

  • PDF

Interaction of Multi Current Power Generation Blade (멀티 해류발전 블래이드 간섭 연구)

  • Jo, Chul-Hee;Park, Kwan-Kyu;Cho, Won-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.47-54
    • /
    • 2006
  • The current power generation is very suitable renewable energy for the application to Korean western and south coastal regions where characterized as having high current speed. Being different from tidal power generation that needs tremendous dam structure to preserve water, the current power generation utilizes the ocean current flow without damaging to estuary area and its environment. There are still many areas to understand the characteristics of current power generation for the actual field installation. As designing muti module with several rotors, the interaction between rotors will occur that would affect the efficiency and RPM of each rotor. In this study, the interactions caused by gaps between rotors in multi module are studied.

Effects of mud-flap parameters on aeroacoustic noise generation inside high-speed trains (풍동을 이용한 고속열차 머드플랩 형상변경에 따른 공력소음 특성 분석)

  • Ryu, Ji-Myung;Park, Jun-Hong;Park, Ki-Hyoung;Song, Si-Mon;Choi, Sung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.469-472
    • /
    • 2007
  • Aeroacoustic sound induced from inter-couch spacing is an important contributor to interior noise generation for high speed trains. Especially the open space between mud-flap has significant impact from flow-structure interactions. To understand noise generation mechanism, experiments were performed using the wind tunnel. To find mud-flap parameters for minimal noise generations the various shape of the mud-flap was installed and its effects on the wall-pressure generation were investigated.

  • PDF

Biological Response Modifiers Influence Structure Function Relationship of Hematopoietic Stem and Stromal Cells in a Mouse Model of Leukemia

  • Basu, Kaustuv;Mukherjee, Joydeep;Law, Sujata;Chaudhuri, Samaresh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2935-2941
    • /
    • 2012
  • Biological response modifiers (BRMs) can alter interactions between the immune system and cancer cells to boost, direct, or restore the body's ability to fight disease. Mice with ethylnitrosourea- (ENU) induced leukemia were here used to monitor the therapeutic efficacy of lipopolysaccaride (LPS), Bacillus Calmette Guerin (BCG) and sheep erythrocytes (SRBC). Flow cytometry based CD34+ positivity analysis, clonogenicity, proliferation and ultrastructure studies using scanning electron microscopy (SEM) of stem cells in ENU induced animals with and without BRMs treatment were performed. BRMs improved the stem-stromal relationship structurally and functionally and might have potential for use as an adjunct in human stem cell therapy.