• Title/Summary/Keyword: Flow-Ratio

Search Result 5,911, Processing Time 0.033 seconds

An Experimental Study on Flow in the Nozzle of a Radial Turbine (구심터빈의 노즐 내부 유동에 대한 시험 연구)

  • Kang, Jeong-Seek;Lim, Byeung-Jun;Ahn, Iee-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • Experimental study on the flow field inside the nozzle for radial turbine was performed. At design point, the pressure is high and the Mach number is low at the pressure side of the nozzle inlet semi-vaneless space as the flow turns through the nozzle vanes. As the flow accelerates through the nozzle passage to the throat the pressure level at the pressure and suction sides becomes similar. The flow continued accelerating from the throat to the inlet of turbine wheel and the pressure field became uniform in the circumferential direction in the vaneless space. In high expansion ratio condition, strong favorable pressure gradient band region occurred just after the throat in the semi-vaneless space in the circumferential direction and the pressure became uniform in the circumferential direction after this band. In low expansion ratio condition, core flow acceleration is dominant after the throat and this non-uniform pressure field reached to the inlet of turbine wheel.

Study on Characteristic of Reforming with Catalyst Using Plasmatron (플라즈마트론을 이용한 촉매 개질 특성 연구)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.4
    • /
    • pp.356-363
    • /
    • 2005
  • The purpose of this paper is to investigate the optimal condition of the Syngas production by reforming of fuel using plasmatron. Plasma was generated by air and arc discharge. The effects of applied steam, $CO_2$ or Ni-catalyst on fuel conversion, as well as hydrogen yield and $H_2$/CO ratio were studied. When the variations of $O_2$/fuel ratio, $H_2O$/fuel flow ratio and $CO_2$/fuel flow ratio were $0.94{\sim}1.48$, $4.3{\sim}10$ and $0.8{\sim}3.05$, respectively. Under the condition mentioned above, result of $H_2O$/fuel flow ratio was maximum $H_2$ concentration, or $28.2{\sim}31.6%$, and result of $H_2O$/fuel flow ratio with catalyst was minimum CO concentration or $6.6{\sim}7.1%$. and $H_2$/CO ratio were $3.89{\sim}4.86$.

The Impact of Operating Cash Flows on Financial Stability of Commercial Banks: Evidence from Pakistan

  • ELAHI, Mustahsan;AHMAD, Habib;SHAMAS UL HAQ, Muhammad;SALEEM, Ali
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.11
    • /
    • pp.223-234
    • /
    • 2021
  • This study aims to examine whether operating cash flows influence banks' financial stability in Pakistan. The study employed annual panel data collected from annual reports of 20 commercial banks listed on the Pakistan Stock Exchange for the year 2011 to 2019. Free cash flow yield was taken as the dependent variable while cash flow ratio was selected as the independent variable, and net interest margin, income diversification, asset quality, financial leverage, the cost to income ratio, advance net of provisions to total assets ratio, capital ratio, financial performance, breakup value per share and bank size were taken as control variables. The study performed ordinary least square technique, random and fixed effects models, Hausman test, Lagrange multiplier test, descriptive and correlation analysis. Results showed that operating cash flows and net interest margin significantly and positively influenced banks' financial stability while the cost to income ratio and advances net of provisions to total assets ratio significantly and negatively associated with banks' financial stability. To improve financial stability, banks should become more cost-effective and enhance their liquidity levels by lowering lending activities. In the future, it would be useful to compare commercial and investment banks, also Islamic and conventional banks in the same research setting.

LAMINAR FLOW OVER A CUBOID (직육면체를 지나는 층류 유동)

  • Kim, Dong-Joo
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • Laminar flows over a cube and a cuboid (cube extended in the streamwise direction) are numerically investigated for the Reynolds numbers between 50 and 350. First, vortical structures behind a cube and lift characteristics are scrutinized in order to understand the variation in vortex shedding characteristics with respect to the Reynolds number. As the Reynolds number increases, the flow over a cube experiences the steady planar-symmetric, unsteady planar-symmetric, and unsteady asymmetric flows. Similar to the sphere wake, the planar-symmetric flow over a cube can be divided into two different regimes: single-frequency regime and multiple-frequency regime. The former has a single frequency due to regular shedding of vortices with the same strength in time, while the latter has multiple frequency components due to temporal variation in the strength of shed vortices. Second, the effect of the length-to-height ratio of the cuboid on the flow characteristics is investigated for the Reynolds number of 270, at which planar-symmetric vortex shedding takes place behind a cube. With the ratio smaller than one, the flow over the cuboid becomes unsteady asymmetric flow, whereas it becomes steady flow for the ratios greater than one. With increasing the ratio, the drag coefficient first decreases and then increases. This feature is related to the flow reattachment on the side faces of the cuboid.

Effects of Dolomite Fine Aggregate and Cement-Based Materials on Viscosity Characteristics, Flow and Flow Time of High-Strength Grout (돌로마이트 잔골재와 시멘트계 재료의 용적 구성비가 고강도 그라우트의 점도 특성, 플로우 및 유하시간에 미치는 영향)

  • Jeong, Min-Gu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.197-198
    • /
    • 2023
  • This study was conducted as part of research and development of high-strength grout. Accordingly, dolomite aggregate was used as a filler incorporated into the high-strength grout. Dolomite aggregate has a disadvantage of increasing the viscosity of the grout due to higher generation of fine powder than other aggregates. Accordingly, in this experiment, it was confirmed that the viscosity, flow time, and flow of high-strength grout change according to the volume composition ratio of dolomite aggregate and cement-based material. All experiments were conducted based on the Korean Industrial Standard KS F 4044, and the mixing factor was applied according to the composition ratio of the binder and the filler. In the experiment, the amount of fine powder contained in the dolomite aggregate rather than the silica sand used in the past is grasped, and after mixing with the grout accordingly, the mixture is proceeded to measure the viscosity in an unhardened state. In addition, the flow and flow time of the grout are evaluated according to the viscosity. As a result of the experiment, it was confirmed that the viscosity and flow time decreased and the flow increased as the volume composition ratio of the dolomite aggregate to the cement-based material increased.

  • PDF

Three-dimensional flow within a film-cooling hole normally oriented to the main flow (수직분사 막냉각구멍 내부에서의 3차원 유동특성)

  • Lee, Sang-U;Ju, Seong-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1185-1197
    • /
    • 1997
  • Three-dimensional flow within a film-cooling hole, which is normally oriented to the main flow, has been measured by using a straight five-hole probe for the blowing ratios of 1.0 and 2.0. The length-to-diameter ratio of the injection hole is fixed to be 1.0 throughout the whole experiments. The result shows that the secondary flow within the hole is strongly affected by the main flow and flow separation at the hole inlet. The higher blowing ratio provides less influence of the main flow on the injectant flow. The three-dimensional flow at the hole exit is considerably altered due to the strong interaction between the injectant and main flow. The aerodynamic loss produced inside the injection hole is mainly attributed to the inlet flow separation.

Estimation of Pollutant Load Delivery Ratio for Flow Duration Using L-Q Equation from the Oenam-cheon watershed in Juam Lake (유량-부하량관계식을 이용한 주암호 외남천 유역의 유황별 유달율 산정)

  • Choi, Dong-Ho;Jung, Jae-Woon;Lee, Kyoung-Sook;Choi, Yu-Jin;Yoon, Kwang-Sik;Cho, So-Hyun;Park, Ha-Na;Lim, Byung-Jin;Chang, Nam-Ik
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2012
  • The objective of this study is to provide pollutant loads delivery ratio for flow duration in Oenam-cheon watershed, which is upstream watershed of Juam Lake. To calculate the delivery ratio by flow duration, rating curves and discharge-loads curves using measured data were established, then Flow Duration Curve(FDC) and pollutant loads delivery ratio curves were constructed. The results show that the delivery ratios for $BOD_5$ for abundant flow($Q_{95}$), ordinary flow($Q_{185}$), low flow($Q_{275}$), and drought flow($Q_{355}$) were 23.9, 12.7, 7.1, and 2.9%, respectively. The delivery ratios of same flow regime for T-N were 58.4, 31.2, 17.2 and 7.1%, respectively. While, the delivery ratios T-P were 17.3, 7.5, 3.4, and 1.1% respectively. In general, delivery ratio of high flow condition showed higher value due to the influence of nonpoint source pollution. Based on the study results, generalized equations were developed for delivery ratio and discharge per unit area, which could be used for ungaged watershed with similar pollution sources.

A Numerical Study on the Similarity of Laminar Flows in Orthogonally Rotating Rectangular Ducts and Stationary Curved Rectangular Ducts of Arbitrary Aspect Ratio (임의의 종횡비를 가지는 수직축을 중심으로 회전하는 직관과 정지한 고고간 내부의 층류 유동의 유사성에 관한 수치적 연구)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.842-849
    • /
    • 2002
  • The present study showed that a quantitative analogy of the fully developed laminar flows inorthogonally rotating rectangular ducts and stationary curved rectangular ducts of arbitrary aspect ratio could be established. In order to clarify the similarity of the two flows, the dimensionless parameters $K_{LR}$ =Re/√Ro and Rossby number Ro= $w_{m}$/$\Omega$d in a rotating strait duct were used as a set corresponding to Dean number $K_{LC}$ =Re/√λand curvature ratio λ=R/d in a stationary curved duct. Under the condition that the value of Rossby number and curvature ratio was large enough, the flow field satisfied the ‘asymptotic invariance property’: there were strong quantitative similarities between the two flows such as friction factors, flow patterns, and maximum axial velocity magnitudes for the same values of $K_{LR}$ and $K_{LC}$ .

THE EFFECTS OF MACH NUMBER AND THICKNESS RATIO OF AIRFOIL ON TRANSONIC FLOW OF MOIST AIR AROUND A THIN AIRFOIL WITH LATENT HEAT TRANSFER (잠열 전달이 일어나는 얇은 익형주위의 천음속 습공기 유동에서의 마하수와 익형 두께비의 영향)

  • Lee, J.C.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.93-102
    • /
    • 2012
  • Once the condensation of water vapor in moist air around a thin airfoil occurs, liquid droplets nucleate. The condensation process releases heat to the surrounding gaseous components of moist air and significantly affects their thermodynamic and flow properties. As a results, variations in the aerodynamic performance of airfoils can be found. In the present work, the effects of upstream Mach number and thickness ratio of airfoil on the transonic flow of moist air around a thin airfoil are investigated by numerical analysis. The results shows that a significant condensation occurs as the upstream Mach number is increased at the fixed thickness ratio of airfoil($\epsilon$=0.12) and as the thickness ratio of airfoil is increased at the fixed upstream Mach number($M_{\infty}$=0.80). The condensate mass fraction is also increased and dispersed widely around an airfoil as the upstream Mach number and thickness ratio of airfoil are increased. The position of shock wave for moist air flow move toward the leading edge of airfoil when it is compared with the position of shock wave for dry air.

Performance Analysis of a Seawater Ice Machine Applied Two-stage vapor compression refrigeration system for Various Refrigerants (2단 증기 압축식 냉동시스템을 적용한 해상용 제빙장치의 냉매에 따른 성능 분석)

  • Yoon, Jeong-In;Son, Chang-Hyo;Heo, Seong-Kwan;Jeon, Min-Joo;Jeon, Tae-Young
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.85-90
    • /
    • 2016
  • Coefficient of performance (COP) for two-stage compression system is investigated in this paper to develop seawater ice machine. The system performance is analyzed with respect to degrees of superheating and subcooling, condensing and evaporating temperatures, compression and mechanical efficiencies and mass flow ratio in an inter-cooler. The main results are summarized as follows : The COP of the system grows when the mass flow ratio, subcooling degree and evaporating temperature edge up. Contrariwise, the system performance descends in case that superheating degree and condensing temperature increase. The most effective factor for the COP is the mass flow rate ratio. Each refrigerant has different limitation for a value of the mass flow ratio in the inter-cooler because of difference in material property.