• 제목/요약/키워드: Flow stress equation

검색결과 283건 처리시간 0.031초

Analysis of permeability in rock fracture with effective stress at deep depth

  • Lee, Hangbok;Oh, Tae-Min;Park, Chan
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.375-384
    • /
    • 2020
  • In this study, the application of conventional cubic law to a deep depth condition was experimentally evaluated. Moreover, a modified equation for estimating the rock permeability at a deep depth was suggested using precise hydraulic tests and an effect analysis according to the vertical stress, pore water pressure and fracture roughness. The experimental apparatus which enabled the generation of high pore water pressure (< 10 MPa) and vertical stress (< 20 MPa) was manufactured, and the surface roughness of a cylindrical rock sample was quantitatively analyzed by means of 3D (three-dimensional) laser scanning. Experimental data of the injected pore water pressure and outflow rate obtained through the hydraulic test were applied to the cubic law equation, which was used to estimate the permeability of rock fracture. The rock permeability was estimated under various pressure (vertical stress and pore water pressure) and geometry (roughness) conditions. Finally, an empirical formula was proposed by considering nonlinear flow behavior; the formula can be applied to evaluations of changes of rock permeability levels in deep underground facility such as nuclear waste disposal repository with high vertical stress and pore water pressure levels.

선반주축계의 동특성 향상에 관한 연구 -주축대와 베드의 보울트 결합을 중심으로- (A Study on the Improvement of Dynamic Characteristics of Spindle-Work System in Lathe - Focused on the Bolt Juint between Headstock and Bed -)

  • 신용호;박태원;홍동표;정인성
    • 대한기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.1-7
    • /
    • 1988
  • 본 연구에서는 컬럼모델을 보울트로 고정할 때 접합면에 알루미늄판, 황동판, 스테인리스판 등을 삽입하고 정적강성과 동적특성을 검토하여 이것을 기초로 공작물- 주축대-공구로 형성되고 있는 사이클중에서 선반의 주축대와 베드를 연결하는 결합부에 모델실험을 사용한 게재물을 삽입하고 선반구축계의 동적특성을 검토하였다.

Computation of viscoelastic flow using neural networks and stochastic simulation

  • Tran-Canh, D.;Tran-Cong, T.
    • Korea-Australia Rheology Journal
    • /
    • 제14권4호
    • /
    • pp.161-174
    • /
    • 2002
  • A new technique for numerical calculation of viscoelastic flow based on the combination of Neural Net-works (NN) and Brownian Dynamics simulation or Stochastic Simulation Technique (SST) is presented in this paper. This method uses a "universal approximator" based on neural network methodology in combination with the kinetic theory of polymeric liquid in which the stress is computed from the molecular configuration rather than from closed form constitutive equations. Thus the new method obviates not only the need for a rheological constitutive equation to describe the fluid (as in the original Calculation Of Non-Newtonian Flows: Finite Elements St Stochastic Simulation Techniques (CONNFFESSIT) idea) but also any kind of finite element-type discretisation of the domain and its boundary for numerical solution of the governing PDE's. As an illustration of the method, the time development of the planar Couette flow is studied for two molecular kinetic models with finite extensibility, namely the Finitely Extensible Nonlinear Elastic (FENE) and FENE-Peterlin (FENE-P) models.P) models.

사출압축성형 공정에 대한 유한요소 해석 (Finite Element Analysis of Injection/Compression Molding Process)

  • 이호상
    • 소성∙가공
    • /
    • 제13권2호
    • /
    • pp.180-187
    • /
    • 2004
  • A computer code was developed to simulate the filling stage of the injection/compression molding process by a finite element method. The constitutive equation used here was the compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Simulations of a disk part under different process conditions including the variation of compression stroke and compression speed were carried out to understand their effects on birefringence variation. The simulated results were also compared with those by conventional injection molding.

$180^{\circ}$곡관을 갖는 정사각 단면 덕트에서의 란류류동 해석 (Analysis of Turbulent Flow in a Square Duct with a $180^{\circ}$ Bend)

  • ;김명호;문찬;최영돈
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.607-621
    • /
    • 1988
  • 본 연구에서는 미세격자구역에서 속도에 관한 모든 운송방정식(transport equation)과 압력방정식을 푸는 완전미세격자법을 채택하였고 거친 격자구역에서는 K, $\varepsilon$ 방정식모델과 Boussinesq의 난류모델로 과점성계수를 구하는 방법 대신 레이놀 즈응력을 대수식으로 직접 구하는 대수응력모델(algebraic stress model, ASM)을 사용하여 해석하였다.

304 스테인리스강이 고온 유동응력곡선과 미세 조직의 예측 (Prediction on Flow Stress Curves and Microstructure of 304 Stainless Steel)

  • 한형기;유연철;김성일
    • 소성∙가공
    • /
    • 제9권1호
    • /
    • pp.72-79
    • /
    • 2000
  • Dynamic recrystallization (DRX), which may occur during hot deformation, is important for the microsturctural evolution of 304 stainless steel. Especially, the current interest in modelling hot rolling demands quantitative relationships among the thermomechanical process variables, such as strain, temperature, strain rate, and etc. Thus, this paper individually presents the relationships for flow stress and volume fraction of DRX as a function of processing variables using torsion tests. The hot torsion tests of 304 stainless steel were performed at the temperature range of 900~110$0^{\circ}C$ and the strain rate range of 5x10-2~5s-1 to study the high temperature softening behavior. For the exact prediction of flow stress, the equation was divided into two regions, the work hardening (WH) and dynamic recovery (DRV) region and the DRX region. Especially, The flow stress of DRX region could be expressed by using the volume fraction of DRX (XDRX). Since XDRX was consisted of the critical strain($\varepsilon$c) for initiation of dynamic recrystallization (DRX) and the strain for maximum softening rate ($\varepsilon$*), that were related with the evolution of microstructure. The calculated results predicted the flow stress and the microstructure of the alloy at any deformation conditions well.

  • PDF

Poly(acrylonitrile)-poly(vinyl chloride) 공중합체의 자체 확산 계수와 유동 자유 홀부피 (Self Diffusion Coefficients and Free Hole Volumes of Poly(acrylonitrile)-poly(vinyl chloride) Copolymers)

  • 김남정
    • Elastomers and Composites
    • /
    • 제46권3호
    • /
    • pp.245-250
    • /
    • 2011
  • Poly(acrylonitrile)-poly(vinyl chloride) 공중합체 섬유의 비결정성 영역에서의 자체 확산 계수와 홀 부피를 응력완화 실험으로 규명하였다. 응력완화 실험은 용매기를 부착한 인장 시험기를 사용하였다. 이론적인 응력완화식 에 응력완화 실험 결과를 적용하여 여러 가지 유동 파라메타를 계산하였다. 유동 파라메타로부터 섬유고분자 물질의 홀부피, 자체확산, 점성, 열역학파라메타 등을 계산하였다. 이들 시료의 유동 파라메타는 유동 단위의 홀 부피, 자체확 산, 유동 활성화 에너지와 직접적인 연관을 갖는 것으로 규명되었다.

유동 모드 댐퍼에서의 Herschel-Bulkley 모델의 유용한 해법 (Useful Guide to Solve Herschel-Bulkley Model in a Flow Mode Damper)

  • 이덕영;박성태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.784-787
    • /
    • 2003
  • Electrorheological(ER) and magnetorheological(MR) fluid-based dampers are typically analyzed using Bingham-plastic shear model under quasi-steady fully developed flow conditions. A Herschel-Bulkley constitutive shear flow relationship is that the linear shear stress vs. strain rate behavior of Bingham model is replaced by a shear stress that is assumed to be proportional to a power law of shear rate. This power is called the flow behavior index. Depending on the value of the flow behavior index number, varying degrees of post-yield shear thickening or thinning behavior can be analyzed. But it is not practical to analyze the damping force in a flow mode damper using Herschel-Bulkley model because it is needed to solve a polynomial equation. A useful guide is suggested to analyze the damping force in a damper using the Herschel-Bulkley model.

  • PDF

Kinitics of Thixotropy of Aqueous Bentonite Suspension

  • Kisoon Park;Taikyue Ree
    • 대한화학회지
    • /
    • 제15권6호
    • /
    • pp.293-303
    • /
    • 1971
  • The theological properties of aqueous suspensions of Black Hills bentonite were measured by using a Couette-type viscometer. Three kinds of flow units in aqueous bentonite suspension were postulated. Each has a different average relaxation time, one Newtonian. One of the non-Newtonian types is thixotropic, and the other is non-thixotropic. The thixotropic non-Newtonian unit is transformed to a Newtonian unit by shear stress. If the stress is relieved, the transformed unit returns to its original state. Two flow equations were derived by introducing chemical kinetics consideration for such a transition into the generalized theory of viscous flow. One equation describes the "upcurve," a diagram of rate of sheat versus shear stress, obtained by increasing the rate of shear, and the other relates to the "downcurve" obtained by decreasing the shear rate. The equations satisfactorilly describe the experimental thixotropic hysteresis of bentonite suspensions. The equations also were successfully applied to the flow curves of the suspensions containing various amounts of monovalent electrolyte (KCI).

  • PDF

Research on Turbulent Skin Friction Reduction with the aid of Direct Numerical Simulation

  • Fukagata, Koji
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.347-354
    • /
    • 2008
  • We introduce a series of studies on turbulent skin friction drag reduction in wall-turbulence. First, an identity equation relating the skin friction drag and the Reynolds shear stress (the FIK identity) is introduced. Based on the implication of the FIK identity, a new analytical suboptimal feedback control law requiring the streamwise wall-shear stress only is introduced and direct numerical simulation (DNS) results of turbulent pipe flow with that control is reported. We also introduce DNS of an anisotropic compliant surface and parameter optimization using an evolutionary optimization technique.

  • PDF