• Title/Summary/Keyword: Flow noise

Search Result 1,721, Processing Time 0.029 seconds

The Study on ODD Acoustic Noise Reduction by Using Micro Muffler (마이크로 머플러를 이용한 ODD소음 저감에 관한 연구)

  • Moon Byeong G.;Cha Sung W.;Lee young H.
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.197-202
    • /
    • 2005
  • Current Optical Disk drive is dominating high share gradually in information storage device market through development of great skill. These technologies can achieve not only improvement of transmission speed but also elevation of recording/reproduction technology. However, these present state cause not only the increase of vibration in structural viewpoint but also problem of serious noise while the ODD becomes high speed/high performance. Specially, air-born noise is being bigger than structural-born noise as disk rotation speed increases gradually. The object of this research is that reduce the air-born noise in optical disk drive by reducing a quantity of flow by using a miniaturized muffler. The micro muffler is a miniaturized muffler. The muffler is used widely by solution to reduce air-born noise which is generated by flow. According to frequency band of the noise source, it can be applied by muffler of various forms. In this research, we examined the noise characteristics of the micro muffler and applied it by noise reduction solution of the ODD. It could get an excellent noise reduction in high frequency band by using the micro muffler than the opened case through the decrease of an inner flow. But it could not get a noise reduction in low frequency band through the decrease of an inner flow.

  • PDF

Underwater Radiated Noise Analysis for An Unmanned Underwater Vehicle Using Power Flow Analysis (파워흐름해석법을 이용한 무인잠수정의 수중방사소음해석)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Lee, Sang-Young;Hwang, A-Rom;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.328-334
    • /
    • 2012
  • Power flow finite element method(PFFEM) combining power flow analysis(PFA) with finite element method is efficient for vibration analysis of a built-up structure, and power flow boundary element method(PFBEM) combining PFA with boundary element method is useful for predicting the noise level of a vibrating complex structure. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and radiated noise of the unmanned underwater vehicle(UUV) in water. PFFEM is employed to analyze the vibrational responses of the UUV, and PFBEM is applied to analyze the underwater radiation noise. The vibrational energy of the structure is treated as an acoustic intensity boundary condition of PFBEM to calculate underwater radiation noise. Numerical simulations are presented for the UUV in water, and reliable results have been obtained.

Development of Hybrid Method for the Prediction of Internal Flow-induced Noise and Its Application to Throttle Valve Noise in an Automotive Engine

  • Cheong, Cheol-Ung;Kim, Sung-Tae;Kim, Jae-Heon;Lee, Soo-Gab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4E
    • /
    • pp.183-196
    • /
    • 2003
  • General algorithm is developed for the prediction of internal flow-induced noise. This algorithm is based on the integral formula derived by using the General Green Function, Lighthill's acoustic analogy and Curl's extension of Lighthill's. Novel approach of this algorithm is that the integral formula is so arranged as to predict frequency-domain acoustic signal at any location in a duct by using unsteady flow data in space and time, which can be provided by the Computational Fluid Dynamics Techniques. This semi-analytic model is applied to the prediction of internal aerodynamic noise from a throttle valve in an automotive engine. The predicted noise levels from the throttle valve are compared with actual measurements. This illustrative computation shows that the current method penn its generalized predictions of flow noise generated by bluff bodies and turbulence in flow ducts.

Development of a High-efficiency and Low-noise Axial Flow Fan through Combining FanDAS and CFX codes (FanDAS-CFX 결합을 통한 고효율-저소음 축류 송풍기의 개발)

  • Lee, Chan;Kil, Hyun Gwon;Noh, Myung-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.37-41
    • /
    • 2012
  • High-efficiency and low-noise axial flow fan is developed by combining the FanDAS, a computerized axial fan design/performance analysis system, and CFD software(CFX). Based on fan design requirements, FanDAS conducts 3-D blade geometry design, quasi-3D flow/ performance analyses and noise evaluation by using through-flow analysis method and noise models for discrete frequency and broadband noise sources. Through the parametric studies of fan design variables using FandDAS, preliminary and baseline design is achieved for high efficiency and low noise fan, and then can be coupled with a CFD technique such as the CFX code for constructing final and optimized fan design. The FanDAS-CFX coupled system and its design procedure are applied to actual fan development practice. The FanDAS provides an optimized 3-D fan blade geometry, and its predictions on the performance and the noise level of designed fan are well agreed with actual test results.

Numerical analysis on the low noise designs of Savonius wind turbines by using phase difference in vortex shedding (와류이탈 위상차를 이용한 사보니우스형 풍력터빈의 소음 저감 설계에 관한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.166-171
    • /
    • 2013
  • In this study, low noise designs of a Savonius wind turbines are numerically investigated. From a previous study, it was found that the high harmonic components whose fundamental frequency is higher than the BPF were found to be dominant in noise spectrum of a Savonius wind turbine. On a basis of this observation, S-shaped blade tip is proposed as a low design factors that decrease wind turbine noise by inducing phase differences in vortex shedding. The conventional Savonius and S-shaped turbines are investigated using Hybrid CAA method where flow field around the turbine are computed using CFD techniques and the radiated noise are predicted by applying acoustic analogy to the computed flow data. Noise reductions by these design factors are confirmed by comparing the predicted noise levels from these turbines.

  • PDF

The refrigerant flow noise from the A/C distribute pipe line shapes (A/C 실내기 배관 형상에 따른 냉매 유동 소음 특성에 관한 연구)

  • Bae, Seong-Won;Huh, Deok;Oh, Sai-Kee;Chung, Baek-Young;Oh, Il-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.371-375
    • /
    • 2009
  • The distribution control of refrigerant flow is one of the basic technique to enhance system efficiency. However, if engineers forget to control the refrigerant flow speed in all operation range, refrigerant flow mal distribution becomes a noise source. The refrigerant flow noise should be checked and controlled at the lowest air flow mode which is the most silent mode and frequently used in night time.

  • PDF

A Study on Flow Analysis of Exterior Rear View Mirror of Passenger Car (승용차 후향거울 주위의 3차원 유동특성 해석)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.35-46
    • /
    • 1997
  • In order to satisfy customer's requirements of ride comfort and high performance, it is necessary for designers to fully understand vehicle aerodynamics and wind noise of newly produced cars because characteristics of flow and wind noise are heavily dependent on each other. In this study numerical and experimental study have been carried out to analyse the effect of flow characteristics at around of rear view mirror on wind noise and soiling on the front S/W. As a result, it's found that the spiral flow mear the front pillar is weakened and spreaded because rear view mirror obstructs the flow. It is also shown that there is abrupt change of gradient of separa- tion line, separation area, intensity of spiral flow and turbulent kinetic energy with varying shape of neck and housing of rear view mirror.

  • PDF

Prediction of Internal Broadband Noise of a Centrifugal Fan Using Stochastic Turbulent Synthetic Model (통계적 난류합성 모델을 이용한 원심홴 내부 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung;Kim, Tae-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1138-1145
    • /
    • 2011
  • The internal broadband noise of a centrifugal fan in a household refrigerator is predicted using hybrid CAA techniques based on stochastic turbulent synthetic model. First, the unsteady flow field around the centrifugal fan is predicted using computational fluid dynamics(CFD) method. Then, the turbulent flow field is synthesized by applying the stochastic turbulent synthetic technique to the predicted flow field. The aerodynamic noise sources of the centrifugal fan are modeled on a basis of the synthesized turbulent field. Finally, the internal broadband noise of the centrifugal fan is predicted using the boundary element method(BEM) and the modeled sources. The predicted noise spectrum is compared with the experimental data. It is found that the predicted result closely follows the experimental data. The proposed method can be used as an effective tool for designing low-noise fans without expensive computational cost required generally for the LES and DNS simulations to resolve the turbulence flow field responsible for the broadband noise.

A Numerical Study on the Generation of Aeroacoustic Sound from Sirocco Fans (시로코 홴의 공력소음 발생에 관한 수치적 연구)

  • 전완호;백승조;김창준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.42-47
    • /
    • 2002
  • Sirocco fans are widely used in HVAC and air conditioning systems, and the noise generated by these machines causes one of the most serious problems. In general, the sirocco fan noise is often dominated by tones at BPF(blade passage frequency) and broadband noise. However, only a few researches have been carried out on predicting the aeroacoustic noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a sirocco fan. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson\`s method is used to predict the acoustic source. Reasonable results are obtained not only fur the tonal noise but also far the amplitudes of the broadband noise. Acoustic pressure is proportional to (Ω)2.3, which is the similar value with the measured data.