• 제목/요약/키워드: Flow imaging

검색결과 545건 처리시간 0.028초

Laser Speckle Contrast Imaging for Measuring Cerebral Blood Flow Changes Caused by Electrical Sensory Stimulation

  • Cho, Ahra;Yeon, Chanmi;Kim, Donghyeon;Chung, Euiheon
    • Journal of the Optical Society of Korea
    • /
    • 제20권1호
    • /
    • pp.88-93
    • /
    • 2016
  • Recently laser speckle contrast (LSC) imaging has become a widely used optical method for in vivo assessment of blood flow in the animal brain. LSC imaging is useful for monitoring brain hemodynamics with relatively high spatio-temporal resolution. A speckle contrast imaging system has been implemented with electrical sensory stimulation apparatus. LSC imaging is combined with optical intrinsic signal imaging in order to measure changes in cerebral blood flow as well as neural activity in response to electrical sensory stimulation applied to the hindlimb region of the mouse brain. We found that blood flow and oxygen consumption are correlated and both sides of hindlimb activation regions are symmetrically located. This apparatus could be used to monitor spatial or temporal responses of cerebral blood flow in animal disease models such as ischemic stroke or cortical spreading depression.

미세 영상 장치를 이용한 벽면 유동 센서 개발 (Development of Wall Flow Sensor Using Micro Imaging Device)

  • 이승환;김병수;김형범
    • 대한기계학회논문집B
    • /
    • 제36권12호
    • /
    • pp.1217-1222
    • /
    • 2012
  • 능동 유동 제어의 되먹임 신호 및 벽면 전단 응력 측정 등을 위해 벽면 유동 센서가 사용되고 있다. 본 연구에서는 광학 마우스에 사용되는 미세 영상 장치를 이용하여 벽면 근처에서 2차원 및 3차원 유체 속도를 측정할 수 있는 센서를 개발하였다. 미세 영상 장치에서 나오는 영상 신호 획득 시스템을 구축하고 획득한 영상에 입자화상속도기법과 초점이탈 영상기법을 적용하여 측정 영역에서의 산란 입자의 위치를 측정하였다. 모사 유동 실험을 통해, 개발된 벽면 유동 센서의 공간 해상도 및 측정 정확도를 검증하였고 기존 미세 영상 장치의 quadrature 신호 결과와 비교하여 입자화상속도기법을 적용할 경우, 측정 정확도 및 측정 범위가 확대되는 것을 확인하였다.

Cerebrospinal fluid flow in normal beagle dogs analyzed using magnetic resonance imaging

  • Cho, Hyunju;Kim, Yejin;Hong, Saebyel;Choi, Hojung
    • Journal of Veterinary Science
    • /
    • 제22권1호
    • /
    • pp.2.1-2.10
    • /
    • 2021
  • Background: Diseases related to cerebrospinal fluid flow, such as hydrocephalus, syringomyelia, and Chiari malformation, are often found in small dogs. Although studies in human medicine have revealed a correlation with cerebrospinal fluid flow in these diseases by magnetic resonance imaging, there is little information and no standard data for normal dogs. Objectives: The purpose of this study was to obtain cerebrospinal fluid flow velocity data from the cerebral aqueduct and subarachnoid space at the foramen magnum in healthy beagle dogs. Methods: Six healthy beagle dogs were used in this experimental study. The dogs underwent phase-contrast and time-spatial labeling inversion pulse magnetic resonance imaging. Flow rate variations in the cerebrospinal fluid were observed using sagittal time-spatial labeling inversion pulse images. The pattern and velocity of cerebrospinal fluid flow were assessed using phase-contrast magnetic resonance imaging within the subarachnoid space at the foramen magnum level and the cerebral aqueduct. Results: In the ventral aspect of the subarachnoid space and cerebral aqueduct, the cerebrospinal fluid was characterized by a bidirectional flow throughout the cardiac cycle. The mean ± SD peak velocities through the ventral and dorsal aspects of the subarachnoid space and the cerebral aqueduct were 1.39 ± 0.13, 0.32 ± 0.12, and 0.76 ± 0.43 cm/s, respectively. Conclusions: Noninvasive visualization of cerebrospinal fluid flow movement with magnetic resonance imaging was feasible, and a reference dataset of cerebrospinal fluid flow peak velocities was obtained through the cervical subarachnoid space and cerebral aqueduct in healthy dogs.

중성자 영상법을 이용한 Heat Pipe 내의 이상유동 가시화 (Visualization of 2-Phase Flow at Heat Pipe using Neutron Imaging Technique)

  • 김태주;박수지;김종열;도승우
    • 한국가시화정보학회지
    • /
    • 제14권3호
    • /
    • pp.15-21
    • /
    • 2016
  • The circular and flat heat pipe were experimentally investigated by using neutron imaging technique. This experimental study was performed at the DINGO of OPAL research reactor, Australia. The diameter of the circular heat pipe is 10 mm and the dimension of flat is $10(width){\times}3(thickness)mm2$, respectively. We used the distilled water as a coolant. The coolant distributions and 2-phase flow patterns were measured under heating conditions. Experimental results show that neutron imaging technique is a good tool to visualize the 2-phase flow and phenomena in the heat pipe. The coolant distributions and 2-phase flow patterns depend on installation posture of the heat pipe and volume ratio of the coolant. Finally, it was discussed to calculate the void fraction by neutron imaging technique.

Synchrotron X-ray 미세영상기법을 이용한 식물 목질부 내부 수액 유동의 계측 (Flow Measurement in Xylem Vessels of a Bamboo Leaf Using Synchrotron X-ray Micro Imaging)

  • 김양민;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.83-86
    • /
    • 2003
  • Synchrotron X-ray micro imaging technique was employed to non-invasively monitor the water flow inside xylem vessels in a bamboo leaf. The phase contrast X-ray images clearly visualized plant anatomy and the rise of a water front inside the vessels. Consecutive X-ray images taken for 60 seconds revealed water rise kinetics against gravity in the xylem of a cut dry leaf taken from a bamboo tree. For the first time, traces of water rise, variation of contact angle between water and xylem wall as well as the internal structure of xylem were obtained. In xylem vessels, a repeating flow pattern has a typical flow velocity of $30.7{\mu}m/s$ and faster flow is established intermittently. It is concluded that the transmission type of X-ray micro imaging can be used as a powerful tool to investigate the ascent of sap in the xylem vessels at a resolution higher than that of MRI.

  • PDF

MR PC 영상을 이용한 유체 흐름 분석 (Measurement of Flow Velocity and Flow Visualization with MR PC Image)

  • 김수정;이동혁;민병구
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.127-130
    • /
    • 1997
  • Phase-contrast(PC) methods have been used for quantitative measurements of velocity and volume flow rate. In addition, phase contrast cine magnetic resonance imaging (MRI) combines the flow dependent contrast of PC MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. In this method, the through-plane velocity has been encoded generally. However, the accuracy of the flow data can be reduced by the effect of flow direction, finite slice thickness, resolution, pulsatile flow pattern, and so on. In this study we calculated the error caused by misalignment of tomographic plane and flow directon. To reduce this error and encode the velocity for more complex flow, we suggested 3 directional velocity encoding method.

  • PDF

낮은 연산 복잡도를 지니는 초음파 혈관 패턴 영상 알고리즘 (An Ultrasonic Vessel-Pattern Imaging Algorithm with Low Computational Complexity)

  • 엄지용
    • 전기전자학회논문지
    • /
    • 제26권1호
    • /
    • pp.27-35
    • /
    • 2022
  • 본 논문은 낮은 연산 복잡도를 지니는 초음파 혈관 패턴 영상 알고리즘을 제안한다. 제안하는 혈관 패턴 영상 알고리즘은 혈류의 흐름 만 감지하여 혈관 패턴을 영상화하는 알고리즘이며 손가락 혈관의 패턴 영상을 추출하는 실시간 신호처리 하드웨어에 적용할 수 있다. 기존의 초음파 의료영상장비의 혈류영상 모드와 달리 제안하는 알고리즘은 혈류의 흐름 만 감지하여 영상으로 복원한다. 즉, 제안하는 영상 알고리즘은 I/Q 복조를 사용하지 않으며 클러터 필터의 출력 신호의 절대 값을 누적하는 방식으로 혈류 흐름의 유무를 검출하기 때문에, 알고리즘의 구조가 비교적 간단하다. 제안하는 영상 알고리즘의 복잡도를 검증하기 위해, Field-II 프로그램을 이용하여 손가락 혈관을 모사하는 시뮬레이션 모델을 구현하였다. 행위모사 시뮬레이션을 통해, 제안하는 알고리즘의 연산시간이 일반적인 color-flow 모드보다 약 54배 작은 것으로 확인되었다. 제안하는 영상 알고리즘에서 요구되는 주요 구성 블록과 연산량을 고려할 때, 제안하는 알고리즘은 FPGA 또는 ASIC과 같은 하드웨어에 구현되기에 용이하다.

Quantitative Analysis of Thyroid Blood Flow and Static Imaging in the Differential Diagnosis of Thyroid Nodules

  • Song, Li-Ping;Zhang, Wen-Hong;Xiang, Yang;Zhao, Na
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6331-6335
    • /
    • 2013
  • Objective:To evaluate the performance of combined quantitative analysis of thyroid blood flow and static imaging data in the differential diagnosis of thyroid nodules. Method: Thyroid blood flow and static imaging were performed in 165 patients with thyroid nodules. Patients were divided into a benign thyroid nodule group (BTN, n=135) and a malignant thyroid nodule group (MTN, n=30) based on the results of post-surgical pathologic examination. Carotid artery thyroid transit times (CTTT), perfusion ratio of thyroid nodule blood/thyroid blood (TNB/TB), and perfusion ratio of thyroid nodule blood/carotid artery blood (TNB/CAB) were measured using thyroid blood flow imaging. The ratios between thyroid nodule and ipsilateral submandibular gland (TN/SG) and thyroid nodule and normal thyroid tissue (TN/T) were measured from thyroid static imaging. The differences between the BTN and MTN groups were compared. Results: 1) CTTT was markedly lower in the MTN group than the BTN group, the difference being statistically significant. 2) TNB/TB and TNB/CAB were both significantly higher in MTN than BTN groups. 3) TN/T was significantly lower in MTN group than BTN group. 4) TN/SG was lower in MTN group than BTN group, but the difference was not statistically significant. 5) Using the combination of CTTT and TN/T, the sensitivity, specificity and accuracy were 93.1%, 95.3% and 94.9% respectively for the diagnosis of MTN. Using the combination of CTTT, TNB/TB and TN/T, the sensitivity, specificity and accuracy changed to 89.7%, 100%, and 98.1% respectively. 6) Correlation analysis demonstrated a significant correlation between TN/T and TNB/TB (r=-0.384, P=0.036) and TNB/CAB (r=-0.466, P=0.009) in the MTN group. Conclusion: The combination of quantitative markers from thyroid blood flow and thyroid static imaging had high specificity and accuracy in differential diagnosis of benign and malignant thyroid nodules, thus providing an important imaging diagnostic approach.

Intra-Motion Compensation Using CSRS method in MRI

  • Ro, Y.M.;Yi, J.H.;Cho, Z.H.
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권4호
    • /
    • pp.377-382
    • /
    • 1994
  • In the conventional Fourier imaging method in MRI (Magnetic Resonance Imaging), intramotion such as pulsatile flow makes zipper-like artifact along the phase encoding direction. On the other hand, line-integral projection reconstruction (LPR) method has advantages such as imaging of short T2, object and reduction of the flow artifact by elimination of the flow-induced phase fluctuation. The LPR, however, necessarily requires time consuming filtering and back-projection processes, so that the reconstruction takes long time. To overcome the long reconstruction time of the LPR and to obtain the flow artifact reduction effect, we adopted phase corrected concentric square raster sampling (CSRS) method and improved its imaging performance. The CSRS is a fast reconstruction method which has the same properties with the LPR. In this paper, we proposed a new method of flow artifact reduction using the CSRS method. Through computer simulations and experiments, we verified that the proposed method can eliminate phase fluctuations, thereby reducing the flow artifact and re- markably shorten the reconstruction time which required long time in the LPR.

  • PDF

Breast Ultrasound Microvascular Imaging and Radiogenomics

  • Ah Young Park;Bo Kyoung Seo;Mi-Ryung Han
    • Korean Journal of Radiology
    • /
    • 제22권5호
    • /
    • pp.677-687
    • /
    • 2021
  • Microvascular ultrasound (US) techniques are advanced Doppler techniques that provide high sensitivity and spatial resolution for detailed visualization of low-flow vessels. Microvascular US imaging can be applied to breast lesion evaluation with or without US contrast agents. Microvascular US imaging without a contrast agent uses a sophisticated wall filtering system to selectively obtain low-flow Doppler signals from overlapped artifacts. Microvascular US imaging with second-generation contrast agents amplifies flow signals and makes them last longer, which facilitates hemodynamic evaluation of breast lesions. In this review article, we will introduce various microvascular US techniques, explain their clinical applications in breast cancer diagnosis and radiologic-histopathologic correlation, and provide a summary of a recent radiogenomic study using microvascular US.