• 제목/요약/키워드: Flow electrification

검색결과 30건 처리시간 0.023초

산업재해에 미치는 대전현상에 관한 연구 (A Study on the Electrification Phenomena Affecting Industrial Disaster)

  • 육재호;안병준
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.101-106
    • /
    • 1993
  • The streaming current of insulating oil increases with increasing oil velocity and oil amount, A contact potential difference as an energetic state exits in the polymer thin film, both sides of which are contacted by two different metals having different work functions. Accordingly, the potential difference may be a cause for the short circuited transient current flowing through the external circuit. The polymers are electrificated as the electric field Is supplied, and the currents flow with increasing temperature.

  • PDF

액체-고체 접촉대전을 위한 PET 기판 기반 ODA/PDMS 딥 코팅 제조 및 평가 (Synthesis and Evaluation of Superhydrophobic ODA/PDMS Dip Coating on PET for Liquid-Solid Contact Electrification)

  • 박선영;강현규;변도영;조대현
    • Tribology and Lubricants
    • /
    • 제37권2호
    • /
    • pp.71-76
    • /
    • 2021
  • As opposed to using fossil fuels, we need to use eco-friendly resources such as sunlight, raindrops and wind to produce electricity and combat environmental pollution. A triboelectric nanogenerator (TENG) is a device that converts mechanical energy into electricity by inducing repetitive contact and separation of two dissimilar materials. During the contact and separation processes, electron flow occurs owing to a change in electric potential of the contacting surface caused by contact electrification and electrostatic induction mechanisms. A solid-solid contact TENG is widely known, but it is possible to generate electricity via liquid-solid contact. Therefore, by designing a hydrophobic TENG, we can gather electricity from raindrop energy in a feasible manner. To fabricate the superhydrophobic surface of TENGs, we employ a dip coating technique to synthesize an octadecylamine (ODA)- and polydimethylsiloxane (PDMS)-based coating on polyethylene terephthalate (PET). The synthesized coating exhibits superhydrophobicity with a contact angle greater than 150° and generates a current of 2.2 ㎂/L while water droplets fall onto it continuously. Hence, we prepare a box-type TENG, with the ODA/PDMS coating deposited on the inside, and place a 1.5 mL water droplet into it. Resultantly, we confirm that the induced vibration causes continuous impacts between the ODA/PDMS coating and the water, generating approximately 100 pA for each impact.

IEC 61850과 IEC 61970을 표준으로 하는 전철변전소 종합자동화 모델에 관한 연구 (A Study on the Model of A Electric Railway Substation Automation Based on IEC 61850 and IEC 61970)

  • 고중구;장우진;최규형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1014-1019
    • /
    • 2011
  • The substation automation is a system to remote-monitor and control electric power flow. And in line with electrification of railway, an interest in electric railway substation automation is increasing. IEC standardized IEC 61850, IEC 61968 and IEC 61970 communication protocol for the telecommunication standardization of the electric power automation industry. The recent SCADA systems in managed electric railway substations are have the problem about the compatibility with the products which fit to the international standard specification afterward. In this paper, the model of electric railway substation automation based on IEC 61850 and IEC 61970 is presented. And the method supporting the compatibility between the equipment is proposed.

  • PDF

식물성 절연유의 벤조트리아졸과 온도의 유동대전 영향 (Influence of Benzotriazole and Temperature on the flow electrification by Vegetable Oils.)

  • 최순호;심명섭;안정식;정중일;김남렬;허창수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.80-80
    • /
    • 2010
  • 본 논문에서는 현재 사용되는 변압기의 절연유인 광유와 새롭게 대두되고 있는 식물유의 신유 상태일 때, 온도와 유동대전방지제(Benzotriazole)에 따른 대전경향을 비교, 분석함으로써 변화되는 조건이 절연유에 미치는 영향에 관해 연구하였다. 유동대전현상을 해석하기 용이한 직렬식 대전장치를 설계, 제작하여 실험한 결과 온도의 변화에서는 광유, 식물유 모두 60[$^{\circ}C$] 부근에서 최대치를 발생하였고 유동대전방지제의 첨가에 따라 유동대전은 광유, 식물유 모두 비슷한 경향으로 변화하였다.

  • PDF

식물성절연유의 유동속도와 온도에 따른 절연파괴전압 (Dielectric Breakdown Voltage According to Flow Velocity and Temperature of Vegetable Oils)

  • 최순호;허창수
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.821-826
    • /
    • 2012
  • The streaming electrification process of vegetable insulating oils occurring when the oils contacted with solid material in a high power transformer circulation system seems to cause electrical discharge incidents and may cause failures. We therefore measured the dielectric breakdown voltage tendency of vegetable insulating oils flowing on the surface of the charging device with various velocity and temperature. First, the relation between the velocity and breakdown voltage tendency of vegetable oils, can be explained by volume effect and v-t effect. Second, experimental results show that applied voltage have little effect on dielectric breakdown voltage, when vegetable insulating oils used for large power transformer.

프레스보드관로에서의 유동대전과 교류전계 인가시의 대전경향 (Static Electrification Caused by Oil Flow in Pressboard Pipe and Charging Tendency under AC Field Application)

  • 권석두;남상천
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제8권6호
    • /
    • pp.56-62
    • /
    • 1994
  • 유동대전 현상을 밝히기 위해 간단한 유순환 장치에 설치된 프레스보드관(pressboard pipe)을 통하여 변압기 유를 순환시키면서 기초적인 실험을 행하였다. 특히, 측정 전극에 교류전계를 인가할 때 이것이 유동대전에 미치는 영향에 대하여 고찰하였다. 측정값은 절연유내에 분포된 전하의 분리와 완화에 기초를 둔 이론적 개념으로부터 유도된 공식에 의하여 검토되었다. 유동 대전은 외부에 교류전계를 인가하는 것에 의하여 증가하는 경향을 나타냈으며, 이는 교류전계의 전기력이 계면부근의 절연유내에 분포되어 있는 과잉전하에 영향을 준 결과로 나타난 현상임을 알 수 있었다.

  • PDF

국부 근접 난방 모듈을 이용한 전기차 탑승자의 열쾌적성에 대한 실험적 연구 (Experimental study on Thermal Comfort of Electric Vehicle Occupants Using Local Proximity Heating Module)

  • 이채열 ;임종한;이재욱;박상희
    • 한국산업융합학회 논문집
    • /
    • 제27권3호
    • /
    • pp.655-663
    • /
    • 2024
  • In order to meet the technological demand for indoor heating systems that ensure winter thermal comfort during the transition from internal combustion engines to electrification, a localized proximity heating module using surface heating elements was developed. The operational performance of heating module was tested in the low temperature chamber. The experiment conditions were varied by changing the chamber temperature (-10, 0℃), the air flow rate (6.2, 6.0, 4.2m3/h), the heater power (100, 80, 60, 40W). Thermal comfort model was confirmed using the CBE Thermal Comfort Tool applying ASHRAE standard 55. Under -10℃ condition, thermal comfort was satisfied at 23.4, 23.2℃ at power of 100W and air flow rate 6.0, 4.6m3/h. Under 0℃ condition, at power of 80W, air flow rate 6.2, 6.0m3/h, and at power of 60W, air flow rate 4.6m3/h showed results of 25.7, 26.1, 23.0℃, respectively, satisfying thermal comfort. This study analyzed the operating performance of the local proximity heating module in the low temperature chamber and applied thermal comfort model to prove applicability of local proximity heating module using surface heating elements and how to utilize the thermal comfort model.

냉각팬 전동화에 따른 시내버스 연비효과 예측 (Prediction of the Effect of Cooling Fan Electrification on City Bus)

  • 이용규;박진일;이종화
    • 한국생산제조학회지
    • /
    • 제22권6호
    • /
    • pp.908-912
    • /
    • 2013
  • Because of their longer operating times and larger size relative to conventional fans, the cooling fans mounted in buses consume larger amounts of energy. Most of the cooling fans mounted in a bus are connected to the engine by a viscous clutch. A viscous cooling fan's speed is determined by its fluid temperature, which is affected by the air flow through the radiator. The fan does not react immediately to the coolant temperature and in doing so causes unnecessary energy consumption. Therefore, the fuel economy of buses using viscous fans can be improved by changing to an electric cooling fan design, which can be actively controlled. In addition, electric power consumption is increased by using electric cooling fans. Thus, when electric fans are applied in conjunction with the alternator management system (AMS), the fuel economy is further enhanced. In this study, simulations were performed to predict coolant temperature and cooling fan speeds. Simulations were performed for both viscous and electric cooling fans, and power consumption was calculated. Additionally, fuel economy was calculated applying both the alternator management system and the electric cooling fan.

유동 대전된 절연유의 제전 방식중 침전극 삽입의 영향(II) (The Effect of Needle Electrode in the Static Charge Elimination Methods for Streaming-Electrification Insulating Oil)

  • 조영규;김용운;임현찬;김두석;신용덕;이덕출
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.624-626
    • /
    • 1993
  • The Electrical Charge generated by friction in flowing insulating oil can create hazadous accidents. Neutralization of static charges in the oil during transportation is an obvious method of overcoming the problem of internal electric charge. It is known that SCR(Static Charge Reducer) can neutralize much of this charge by the needle electrode and mixing it with the original charge. In our experiment, a filter to generate static charge was set just befor a measurement pipe, and streaming current from the filter to the earth $I_s$, current from the electrode to the earth $I_e$ and current from the receiving tank to the earth $I_f$ were measured in a steady state. As a result, charge density and needle electrode current increases with increasing of oil temperature. Charge elimination rate decreases with increasing of oil flow rate, and increases with increases of oil temperature. Faraday Cage current decreases with increasing of oil temperature.

  • PDF

An investigation into energy harvesting and storage to power a more electric regional aircraft

  • Saleh, Ahmed;Lekakou, Constantina;Doherty, John
    • Advances in aircraft and spacecraft science
    • /
    • 제8권1호
    • /
    • pp.17-30
    • /
    • 2021
  • This is an investigation for a more electric regional aircraft, considering the ATR 72 aircraft as an example and the electrification of its four double slotted flaps, which were estimated to require an energy of 540 Wh for takeoff and 1780 Wh for landing, with a maximum power requirement of 35.6 kW during landing. An analysis and evaluation of three energy harvesting systems has been carried out, which led to the recommendation of a combination of a piezoelectric and a thermoelectric harvesting system providing 65% and 17%, respectively, of the required energy for the actuators of the four flaps. The remaining energy may be provided by a solar energy harvesting photovoltaic system, which was calculated to have a maximum capacity of 12.8 kWh at maximum solar irradiance. It was estimated that a supercapacitor of 232 kg could provide the energy storage and power required for the four flaps, which proved to be 59% of the required weight of a lithium iron phosphate (LFP) battery while the supercapacitor also constitutes a safer option.