• 제목/요약/키워드: Flow deviation

검색결과 548건 처리시간 0.029초

Numerical investigation of the large over-reading of Venturi flow rate in ARE of nuclear power plant

  • Wang, Hong;Zhu, Zhimao;Zhang, Miao;Han, Jinlong
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.69-78
    • /
    • 2021
  • Venturi meter is frequently used in feed water flow control system in a nuclear power plant. Its accurate measurement plays a vital role in the safe operation of the plant. This paper firstly investigates the influence of the length of each section of pipeline, the throat inner diameter of Venturi and the flow characteristics in a single-phase flow on the accuracy of Venturi measurement by numerical calculation. Then the flow and the accuracy are discussed in a multi-phase flow. Numerical results show that the geometrical parameters and the characteristics of complex turbulent flow in the single-phase flow have little impact on the accuracy of Venturi flow rate measurement. In the multi-phase flow, the calculated flow rate of Venturi deviated from the actual flow rate and this deviation value is closely related to the amount of steam in the pipeline and increases sharply with the increase of the amount of steam. The over-reading of Venturi flow rate is present.

A Numerical Study on the Design of Exchanger for Desiccant Dehumidifier (데시칸트 제습기용 열교환기 설계에 관한 수치해석적 연구)

  • Kim, Chi-Wan;Ahn, Young-Chull;Kim, Gil-Tae
    • Journal of Power System Engineering
    • /
    • 제17권6호
    • /
    • pp.54-62
    • /
    • 2013
  • A numerical analysis is performed to evaluate mass flow balance in the heat exchanger for the dehumidifier. To improve the mass flow balance for maximum heat transfer performance, inlet, outlet and baffle are changed. Mass flow balance is evaluated by non-uniformity of flow which is the same concept with the standard deviation. Usually, there will occur many paths between the inlet and the outlet, however, it will follow shortest and low resistance ways. The uniform distribution of flow is numerically analyzed for several types of heat exchangers. Making the shortest way between the inlet and the outlet is most important factor. Two types of heat exchangers are installed in the dehumidifier and 4 cases of Type A heat exchangers and 3 cases of Type B heat exchangers are evaluated and optimized. The result of this research is applied to design heat exchanger for commercial dehumidifiers.

3-Dimensional Computations within the Flow Passage of the Steam Turbine Nozzle with and without Tip Clearance (증기 터빈 노즐에서의 익단 간극에 의한 3차원 유동장의 수치 해석적 연구)

  • Jo, Su-Yong;O, Gun-Seop;Kim, Su-Yong;Yun, Ui-Su
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.55-65
    • /
    • 1995
  • Three-dimensional incompressible turbulent flow fields within the passage of the steam turbine nozzle with/without tip clearance have been simulated by solving the Navier-Stokes equations with SIMPLE scheme. The extended k-e model is applied to modeling the Reynolds stresses. Grids in the computational domain are generated by solving the Poisson's equations to improve the smoothness and orthogonality. Flow losses, secondary flow, velocity profiles, and deviation angles are obtained. The computated results without tip clearance show good agreement with the experimental data.

  • PDF

Visualization of Coolant Flow in the Cylinder Read and Exhaust Valve Bridge for the Countermeasure of Thermal Loading in the DOHC Gasoline Engine (DOHC 가솔린기관의 열부하대책을 위한 실린더헤드 및 국소 배기밸브 브릿지부의 냉각수 유동해석)

  • 위신환;이종태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제10권6호
    • /
    • pp.1-10
    • /
    • 2002
  • As the preliminary stage for the countermeasure of thermal loading in miller cycle engine, coolant flows in the cylinder head of base engine including exhaust valve bridge were visualized and analyzed by using PIV technique. It was found that low coolant velocity regions were around exhaust valve bridge, around which stagnation of the coolant flow was observed due to the complex geometry configuration of water jacket. And velocity variation between each cylinder was remarkable. For the countermeasure of these, it is necessary to enhance coolant flow around exhaust valve bridge and to improve the deviation of coolant flow between each cylinder.

Flow Through Rubble Mound Dike (사석제를 투과하는 흐름)

  • 김채수;남선우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제30권4호
    • /
    • pp.109-116
    • /
    • 1988
  • This study was aimed at determining a regime of flow through rubble mound dike consisted of all sized quarrystons, and deriving a relationship between hydraulic gradient (I) and mean flow velocity (V) through the dike. The analysis was carried out with the data observed after final gap closing of the Haenam Sea dike from May, 6 to May, 14, 1987. The resu]ts are summarized as follows: 1. The regime of flow would be defined as the turbulent flow. 2. As to the relationships, two kinds of formula that are exponential and binomial were obtained. Exponential formula: I=2.099V 1.2888 Binomial formula: I=0.6113V+5.5235V$^2$ 3. Correlation coefficient of the former was 0.824 and that of the latter was 0.821, and the deviations between observed data and estimated were 0.0070 and 0.0064 respectively. 4. Comparing the correlation coefficient, both the equations have the same correlation coefficients, but in case of the deviation the binomial equation was better than the exponential equation. Therefore, the binomial equation is proposed for analyzing the flow through rubble mound dike.

  • PDF

The Influence of Personality Characteristics, Self-leadership and Positive Psychological Capital on Learning Flow of Nursing Students (간호대학생의 성격유형, 셀프리더십, 긍정심리자본이 학습몰입에 미치는 영향)

  • Jeong, Seung-Eun;Han, Jung Hee
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • 제25권4호
    • /
    • pp.393-404
    • /
    • 2019
  • Purpose: This study aims to investigate the influence of personality type, self-leadership, and positive psychological capital on the flow of learning of nursing students. Methods: The sample consisted of 179 nursing students. Data were analyzed using frequency, percentage, mean, standard deviation, t-test, ANOVA, $Scheff{\acute{e}}^{\prime}s$ test, Pearson's correlation coefficient analysis, and Hierarchical multiple regression. Results: Upon analysis, the relative influence of the variables that can improve learning flow, the influencing variables, were identified as self-leadership and self-efficacy. Conclusion: To increase the learning flow, supportive measures and strategies that increase positive psychological capital should be developed, successful cases of self-leadership be shared, and be incorporated into a culture that promotes learning flow. And to promote the learning flow, it needs political and environmental improvement, and institutional support of at the college level.

The effect of position of propeller fan relative to duct inlet on flow characteristics (프로펠러 팬과 덕트와의 상대위치가 유동특성에 미치는 영향)

  • Sim, W.C.;Cho, K.R.;Joo, W.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제9권1호
    • /
    • pp.14-22
    • /
    • 1997
  • The position of propeller fan from duct inlet is one of basic parameters for the design of propeller fan. To investigate the effect of its position on fan characteristics, the inlet flow fields and relative flow angles were measured by a 5-hole pitot tube. The experimental results indicate that the ratio of radial flow introduced from propeller circumference to total inlet flow increases with the increase of propeller distance from duct inlet. When fan operates without duct, the total flow rate and the radial flow ratio are higher than those of any other positions of propeller relative to duct inlet. The radial flow ratio decreases as a flow coefficient and the propeller distance decrease. Therefore the front flow fields can be adjusted in some extent by varying the propeller distance according to a fan loading. The inlet flow angles are decreasing a little as a rotational speed and the propeller distance decrease. In the present case it was judged that the deviation angle of outlet flow became negative owing to a flow separation near a trailing edge.

  • PDF

A Study on How to Minimize the Luminance Deviation of AC-LED Lighting (교류 LED 조명의 빛 밝기 편차를 최소화하는 방법에 대한 연구)

  • Dong Won Lee;Bong Hee Lee;Byungcheul Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제36권3호
    • /
    • pp.255-260
    • /
    • 2023
  • In order to spread LED lighting, LED lighting technology directly driven by alternating current (AC) commercial power has recently been introduced. Since current does not flow at a voltage lower than the threshold voltage of the LED, a non-conductive section occurs in the current waveform, and the higher the threshold voltage of the LED, the more discontinuous current waveforms are generated. In this paper, multi-LED modules are connected in series so that the threshold voltage can be adjusted according to the number of LED modules. A small number of LED modules are driven at a low instantaneous rectified voltage, and a large number of LED modules are driven at a high instantaneous rectified voltage to lengthen the overall lighting time of AC-LED lighting, thereby minimizing the luminance deviation of AC-LED lighting. In addition, the load current flowing through the LED module is adjusted to be the same as the design current even at the maximum rectified voltage higher than the design voltage, so that the light brightness of the LED module is kept constant. Therefore, even if the rectified voltage applied to the LED module changes, the AC-LED lighting in which the light brightness is constant and the luminance deviation is minimal has been realized.

Robust Ultrasound Multigate Blood Volume Flow Estimation

  • Zhang, Yi;Li, Jinkai;Liu, Xin;Liu, Dong Chyuan
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.820-832
    • /
    • 2019
  • Estimation of accurate blood volume flow in ultrasound Doppler blood flow spectrograms is extremely important for clinical diagnostic purposes. Blood volume flow measurements require the assessment of both the velocity distribution and the cross-sectional area of the vessel. Unfortunately, the existing volume flow estimation algorithms by ultrasound lack the velocity space distribution information in cross-sections of a vessel and have the problems of low accuracy and poor stability. In this paper, a new robust ultrasound volume flow estimation method based on multigate (RMG) is proposed and the multigate technology provides detail information on the local velocity distribution. In this method, an accurate double iterative flow velocity estimation algorithm (DIV) is used to estimate the mean velocity and it has been tested on in vivo data from carotid. The results from experiments indicate a mean standard deviation of less than 6% in flow velocities when estimated for a range of SNR levels. The RMG method is validated in a custom-designed experimental setup, Doppler phantom and imitation blood flow control system. In vitro experimental results show that the mean error of the RMG algorithm is 4.81%. Low errors in blood volume flow estimation make the prospect of using the RMG algorithm for real-time blood volume flow estimation possible.

Numerical simulation of diffusion in the stratified flow

  • Mizumoto N.;Kawamura T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.255-256
    • /
    • 2003
  • Simulations of atmospheric diffusion process under stable and unstable conditions were carried out using both numerical and experimental methods. Results from the previous study show that numerical simulation using 3-dimensional incompressible Navier-Stokes equation and density deviation are in good agreement with typical plume pattern. In this study, we use experimental data of temperature and wind profile obtained from a thermally stratified wind tunnel as initial conditions for numerical simulation and compare the results.

  • PDF