• Title/Summary/Keyword: Flow depth

Search Result 1,787, Processing Time 0.033 seconds

Study for Reduction Effect of Pool Top Radiation in Research Reactor by Using Ion Exchanger of Hot Water Layer (고온층계통의 이온교환기에 의한 연구로 수조 상부 방사선의 저감효과에 대한 연구)

  • Park, Yong-Chul;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.40-47
    • /
    • 1999
  • A hot water layer (HWL hereinafter) was installed at the depth of 1.2 m from the pool surface to reduce the radiation level at the pool top. After the HWL system was improved by the replacement of the filter with the Ion Exchanger to capture the Na-24, to purify the pool water of HWL and finally to reduce the radiation at the pool top. It was confirmed by the performance test of the pump and the measurement of the pressure difference through the Ion Exchanger and the strainer, that the flow characteristics of HWL system was not adversely affected after the system modification. Also the flow analysis using the pressure loss coefficients of the Ion Exchanger and strainer, calculated by the Darcy formula, could predict the flow variations by pressure changes within $10\%$ error in comparison with the field test results. It was also confirmed that HWL was maintained with the depth of 1.2 m from the pool surface because each electric water heater was electrically and thermodynamically maintained at 30 kW and the temperature of HWL was maintained with $5^{\circ}C$ higher temperature than that of pool water. Finally, it was confirmed that the pool top radiation was saturated and stabilized below 10000 nG/hr within 24 hours as the ion exchanger captured the main nucleus, Na-24 and purified the pool water of HWL.

  • PDF

A MECHANISM OF DEEP WELD PENETRATION IN GAS TUNGSTEN ARC WELDGING WITH ACTIVATING FLUX

  • Manabu Tanaka;Hidenori Terasaki;Masao Ushio;John J. Lowke;Yang, Chun-Li
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.76-81
    • /
    • 2002
  • The dramatic increase in the depth of a weld bead penetration has been demonstrated by welding a stainless steel in GTA (Gas-Tungsten-Arc) process with activating flux which consists of oxides and halides. However, there is no commonly agreed mechanism fer the effect of flux on the process. In order to make clear the mechanism, each behavior of the arc md the weld pool in GTA process with activating flux is observed in comparison with a conventional GTA process. A constricted anode root is shown in GTA process with the activating flux, whereas a diffuse anode root is shown in the conventional process. These anode roots are related strongly to metal vapor from the weld pool and the metal vapor is also related to temperature distributions on the weld pool surface. Furthermore, it is suggested that a balance between the Marangoni force and the drag force of the cathode jet should dominate the direction of re-circulatory flow in the weld pool. The electromagnetic force encourages the inward re-circulatory flow due to the constricted anode root in the case with flux. The difference in flow direction in the weld pool changes the geometry or depth/width ratio of weld bead penetration.

  • PDF

The Effects of Groove Dimensions of Pad on CMP Characteristics (패드 그루브의 치수가 CMP 연마특성에 미치는 영향)

  • Park Ki-Hyun;Kim Hyoung-Jae;Choi Jae-young;Seo Heon-deok;Jeong Hae-do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.432-438
    • /
    • 2005
  • CMP characteristics such as material removal rate and edge effect were measured and investigated in accordance with pad grooving effect, groove width, depth and pitch. GSQ (Groove Stiffness Quotient) and GFQ (Groove Flow Quotient) were proposed to estimate pad grooving characteristics. GSQ is defined as groove depth(D) divided by pad thickness(T) and GFQ is defined as groove width(W) divided by groove pitch(P). As GFQ value increased, material removal rate increased some point but gradually saturated. It seems that material removal rate is not affected by each parameter respectively but by interaction of these parameters such as groove dimensions. In addition, an increase in GFQ and GSQ causes edge effect to be improved. Because, pad stiffness decreases as GSQ and GFQ increase. In conclusion, groove influences relative pad stiffness although original mechanical properties of pad are unchanged by grooving. Also, it affects the flow of slurry that has an effect on the lubrication regime and polishing results. The change of groove dimensions has influence on pad stiffness and slurry flow, so that polishing results such as removal rate and edge effect become changed.

Preliminary Design of a Deep-sea Injection System for Carbon Dioxide Ocean Sequestration (이산화탄소 해양격리 심해주입시스템의 초기설계)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.265-268
    • /
    • 2006
  • The preliminary design of a deep-sea injection system for carbon dioxide ocean sequestration is performed. Common functional requirements for a deep-sea injection system of mid-depth type and lake type are determined, Liquid transport system, liquid storage system and liquid injection system are conceptually determined for the functional requirements. For liquid injection system, the control of flow rate and temperature of liquid $CO_2$ in the injection pipe is needed in the view of internal flow. The function of depressing VIV(Vortex Induced Vibration) is also required in the view of dynamic stability of the injection pipe. A case study is performed for $CO_2$ sequestration capacity of 10 million tons per year. In this study, the total number of injection ships, the flow rate of liquid $CO_2$ and the configuration of a injection pipe are designed. The static structural analysis of the injection pipe is also performed. Finally the preliminary design of a deep-sea injection system is proposed.

  • PDF

PIV measurement of oscillatory flow in a micro-channel as a bronchiole model

  • LEE Won-je;KAWAHASHI Massaki;HIRAHARA Hiroyuki
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.125-134
    • /
    • 2004
  • The improvement of artificial respiration method has brought about the decrease in mortality of pulmonary diseases patients. Various respiratory curative methods, inclusive of HFOV (High Frequency Oscillatory Ventilation), have been developed for more effectual and less harmful management of acute respiratory failure. However, the mechanism of gas transfer and diffusion in a bronchiole has not yet been clarified in detail. As a first approach to the problem, we measured oscillatory flows in a Y-shaped micro-channels as bronchiole model by micro Particle Image Velocimetry(micro PIV). In order to establish the fundamental technique of PIV measurements on oscillatory air flow in a micro-channel, we used about 500-nm-diameter incense smoke particles, a diode laser, a high speed camera including an objective lens, and a HFOV, which is effective technique for medical care of pulmonary disease patients, especially, infants. The bronchiole model size is that parent tube is $500\{mu}m$ width and $500\{mu}m$ depth, and daughter tubes are $450\{mu}m$ width and $500\{mu}m$ depth. From this study made on the phenomenon of fluid in micro size bronchus branch of a lung, we succeeded to get time series velocity distribution in a micro scale bronchial mode. The experimental results of velocity distribution changing with time obtained by micro PIV can give fundamental knowledge on oscillatory airflow in micro-channel.

  • PDF

Steady Boundary Layer Flow under the Influence of Progressive Finite Amplitude Wave (진행성 유한진폭파로 인한 정상성 경계층류)

  • OhImSang
    • 한국해양학회지
    • /
    • v.21 no.4
    • /
    • pp.259-264
    • /
    • 1986
  • The problem of the formation of steady stream of flat bottom boundary is revisited by applying a progressive finite amplitude wave as an external flow. A solution for the boundary layer is found by expanding the boundary equation into double Fourier series. A vertical profile of the stream is obtained as a function of the ratio, h/L, where h and L are the water depth and the wave length. For the best applicable range of the external wave, it is shown that the boundary stream is independent of the fluid viscosity, but a function of the wave parameters and the water depth. The stream velocity of the steady boundary layer flow is proportional to the wave phase velocity and the square of the ratio, H/h, where His the wave height. The magnitude of the velocity is insignificant when h/L is greater than 1/5.

  • PDF

Hydraulic Model Experiment for Field Application of Iceharbor-type Precast Fishway (조립식 아이스하버식 어도의 현장 적용을 위한 수리모형실험)

  • Kim, Jae-Ok;Park, Sang-Hyun;Cho, Jae-Won;Hwang , Jong-Seo;Jo , Guk-Hyun;Joh , Seong-Ju
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.3-14
    • /
    • 2004
  • This study was conducted to assess the possibility of the field application of the iceharbor-type precast fishway. When overflow depth of weir is 4.0 cm in model fishway, upper part velocities appear appropriate for upstream migration of fish and the lowest overflow wall (right line) in lower part has shown velocity distribution more or less inadequate for upstream migration. Except that right line, left and middle line revealed that velocities are appropriate for upstream migration of fish. Therefore, we concluded that this fishway owing to be not broad growth width of overflow velocities according to increasing discharges can correspond to variation of water level. Also We consider that various velocities in fishway were effective, because slow velocity line can guide flow for upstream migration. For low flow, the arrangement of different crest level or each overflow part (higher left, middle and lower right, or lower left, middle and higher right) was more effactive than unform crert level. Hole plays an important role as migration pass during drought and flood flow. Therefore, We concluded that this fishway can cope with water depth variation by various overflow wall height change and raise the field applicability with better performance hydraulically and structurally.

Analysis of Correlation on Physical Characteristics and Bed Materials in Natural Rivers (자연하천에서 하도의 물리적 특성과 하상재료의 상관관계분석)

  • Kim, Ki-Heung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.95-104
    • /
    • 2010
  • The purpose of this study is to analyze the correlation between physical stream characteristics and bed materials in natural rivers. Accordingly, four natural rivers were selected reference streams, they were Nam river, Sumjin River, Naesung River and Han River. Grain size distributions of bed materials were gravels, cobbles and boulders in Han river and Nam river, were sand, gravels, cobbles and boulders in Sumjin river and were sand in Naesung river. Four reference streams were divided into each two reference reaches (straight and bend) by plan and profile characteristics of naturally meandering stream. Therefore various reference reaches were chosen in the aspect of physical stream characteristics and grain size distributions. The results investigated and analyzed are as follows. The streams that grain sizes distributions of river bed materials were coarse were stable because they had variety of bed slope without sediment deposition, and then the riffles frequency and the physical characteristics were various. Also, velocitydepth regime were various in four kinds, and the response parts for water level change were small, so that channel flow status were stable and excellent condition. On the other hand, sand river that grain sizes distributions of river bed materials were fine had not the variety of parameters as velocity-depth regimes, sediment deposition, channel flow status and riffles frequency, so that the physical stream characteristics were not various.