The Journal of the Oceanological Society of Korea
Vol. 21, No. 4, p.259~264, December 1986.

Steady Boundary Layer Flow under the Influence of Progressive
Finite Amplitude Wave

Oh, Im Sang

Department of Oceanography, Seoul National University, Seoul 151, Korea

EITHE AREERZ

®

%

5\1.

EXENE BRER

®

AERER R

Abstract

The problem of the formation of steady stream on flat bottom boundary is revisited by applying a

progressive finite amplitude wave as an external flow. A solution for the boundary layer is found by ex-
panding the boundary equation into double Fourier series. A vertical profile of the stream is obtained as
a function of the ratio, h/L, where h and L are the water depth and the wave length. For the best ap-
plicable range of the external wave, it is shown that the boundary stream is independent of the fluid
viscosity, but a function of the wave parameters and the water depth. The stream velocity oi the steady
boundary layer flow is proportional to the wave phase velocity and the square of the ratio, H/h, where
H is the wave height. The magnitude of the velocity is insignificant when h/L is greater than 1/5.
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INTRODUCTION

In water wave the particles of fluid possess
two kinds of mass transport velocities. The
first kind is the Stokes’ drift in the interior
layer of the fluid (Stokes, 1880). The drift
which is a Lagrangian guantity is a net mass
transport velocity in the direction of the wave
propagation. The second is the steady stream
which is developed on the bottom boundary
due to the viscosity of the fluid.

The steady streaming near the botiom
boundary has been also an interesting topic
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because it is clearly relevent to questions in-
volving the movement of sediment and sand
by wave action. In 1851, Stokes found a solu-
tion of the problem of an oscillating plane
boundary in a fluid at rest at infinity on the
assumption of perfect, non-viscous fluid.
About a century later, Longuet-Higgins
(1953) developed a theory of mass transport
using small amplitude wave motion by taking
account of the viscosity. His solution is
markedly different from the pertect-tluid
solutions with irrotational motion. Its chief
characteristic is a strong forward velocity near
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the bottom. The mass transport velocity near
the boundaries, however, does not depend
critically on the ratio of the wave amplitude
and the thickness of the boundary layer, but is
determined by the first order motion and the
local boundary conditions.

In the present paper the vertical structure
of the steady stream is studied. In the presence
of a progressive finite amplitude wave in the
interior of the fluid, a more satisfactory
physical and mathematical model of the
phenomenon of steady stream near the bot-
tom boundary will be developed. The finite
amplitude wave theory is used here because
the streaming velocity is the second order
quantity. We also study the dependence of the
stream velocity on the ratio of h/L., where h
and L are the water depth and wavelength.

EQUATIONS AND BOUNDARY
CONDITIONS

We consider a boundary layer flow on a
plane bottom with x coordinate to the direc-
tion of the wave propagatin in the farfield
from the boundary layer and z coordinate ver-
tical to the bottom (Fig. 1.).

The propagating wave in the farfield is a
Stokes’ wave whose surface elevation H and
the particle velocity U is as follows (Laitone,
1962)

_ e *cosh kh
H=b cos ¢ +4k ok kh(2+COSh 2kh) -
cos 2£40(e?) D
,3C
U=¢C cosh{k(z+h)] cos¢ +¢€ rEl
cosh(2k (z+h)) s
ahikh oS 2640(e% ()
here, & = kx - ot, k the wavenumber

(=2 7n/L, L is the wave length), ¢ the fre-
quency (=27 /T, T is the wave period), C the
phase velocity, b the amplitude of the first
order term, h the water depth, and ¢ =
bk/sinh kh.
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Fig. 1. The coordinate system.

For a bottom boundary layer, we need to
stretch the vertical coordinate using the
Reynolds number R ( = CL/v, v the kinematic
viscosity) to see the clear structure of the
stream. Under the normal ocean wave condi-
tion, the Reynolds number is large and the
thickness of the bottom boundary layer is of
the order ¥/ T (Schiliting, 1979; Stuart,
1976). The new vertical coordinate is

7=V R/27 ki{z+h). 3)

The wave motion near the boundary exerts
as an external forcing to the development of
the boundary stream, thus, we need to find
U@z - —h)

U=U|,._n=eC cosé¢

3C
tet—m—ro - :
¢ ot <08 26 4+0(e® 4)
For the boundary layer, Schlichting’s (1979)
boundary layer equation is used with the wave
forcing terms at the righthand side.

‘/’zz+¢’z‘/’zz_ Gat e V= U,+UU, 5)

The subscripts denote the derivatives with
respect to each variable, and the stream func-
tion is defined ¢ (x,z,t) as

_%¢ __9¢ 6
57 Y an (6}

In the ¢ — 7 coordinate system, (5) becomes
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= (U,+UU,)/C% )
where
6= (k/C) Vk/2x ¢. ®)

Near the bottom boundary 2z -— —h, the
righthand side (= RHS) of (7) becomes

a,"+2a,a,

— (n B2y _ .
RHS = (a, 2C)sm§+(az 5C )
sin2¢ + (aa—a—g—‘) sin 3¢ 9)
where
a, = ¢

a, 2%5 */sinh? kh

a, =634—e’ (13—4 cosh® kh) /sinh* kh.

The equation to be solved in O(¢?) is

‘¢nt+¢n¢né°¢f¢rm_¢n7m=RHS (10)

We apply the non-slip boundary condition for
the bottom boundary and assume that the par-
licle velocity of the boundary oscillation mat-
ches that of the wave motion in first order
when the particle is far enough from the bot-
tom boundary.

¢ (£,0)=0, ¢,(£,0)=0, (l1a)

¢»=—cosé& as p—oo,

(11b)
METHOD OF SOLUTION

To solve equation (10) we shall expand ¢
(£, 1) in a double Fourier series in the dimen-
sionless variable § . The coefficients are
functions of 7 and the parameter ¢ and each
of these will be expanded in a power series in ¢

¢=§ e'fu,ﬁ-f b et [f,, cosj¢
i=0 =1 j=1

+g., sinjé], (12)
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here, 1’s and g’s are only function of 5.
Substituting (12) into (10) and collecting the
lowest order terms, we get

oo = 0, 13)
or =0, (14)
w - 1 ” 4

01 :E‘(gx.ofuo_gl.ofn,o) (15)

73 l ” 7
and fors =§"(g|.o fm‘g:,n fl.l)

+ (g:x fno’&.a f::|)‘ (16)

1
2

The primes above denote the derivatives with
respect to 1. It is easy to solve (13) and (14).
After applying the boundary conditions (11),
we gel

foo =0 (17)
and fo.\ =0. (18)

In order to solve the differential equation
(15) we have to wait until we determine {, , and
g,,- Collecting the coefficients of cos £ and
applying (17) and (18), we obtain three
lowest order equations,

0(e) @ filtgio=0 (19)
0(e? : {7, +g, ,=0 (20)
0(e?) : f;f’z"'g‘/‘z’_‘g:fofzo“gx,of;:o/z
+ (f].082.0 ~ frogr0) /2
+ (- 152810 ~flogse/2
+1,08%0/2). 21

Similarly we obtain the equations for the coef-
ficients of sin § as follows

O0(e) * fo—gle—=-1 (22)
0(e?) fl,—egl =0 (23)
0(e®) © f,—gl,=3/4 sinh*kh— (g, , g7,

‘gz‘ogfo/2]+fo.szfo/2
- fz.o f:fo/Z"}*fgz f).o

+ (g(.og;,o ~fo.: f7.0
~3flof54) /2. (24)

By solving (19) and (22) tor 1, ,fur g, , we cb-
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tain the solution after application of the boun-
dary conditions (11),

fo=1/V2 -n-(-a)/V2,
o = (1_p_Q)/V7

where p and g are defined as follows for

(25)
(26)

simplicity,
=e /T cos(n/V2), (27a)
=e "7 sin(n/V2). (28b)

Now, we can determine f, , (see equation (15))
using (25) and (26). It leads to the steady
streaming flow o the direction of wave pro-
pagation

3 353 1 -n/‘/——__.__
2 77+4v-2' .v— (p ZQ)
1 .
2 np. (28)

Let’s look at the second order terms. We can
solve ftor f,, and g,; by matching (20) and
(23). The required boundary conditions (kq.
11) forced them to be zero.

fi.. =0, 29)
g1 =0. (30)
Here, we used
-a—a%-—' 0 as 7™, (31)
9811 -0 as p—>o 32)
o7

The equations (29) and (30) give the solution
of (16) immidiately

fo.s =0. 33)

We, however, can not determine f,, and g, ,
until we tind t,, and g,,. Let’s look at the se-
cond harmonics. We collect the 0(e*) and O(e”)
coetficients of cos 2€.

0(52) : ”/ +gz o=—[g§fo f1.0+f:og\,o]/4
+g; 0 f;.0/2 (34)
0(e®) 1 £, +g,,=0. (35)

1. 5. 0h

Similarly the coefficients of sin 2£ are

0(52) . f;o g;’/o"_ (gl,og;:a_fLof;/,o)/‘l
+(glﬂg10— 1,of|’.o)/4
0(e®) : f5,—gdy =0. 37)

It is possible Lo solve (34) and (36) for f, , and
g2,, using (25) and (26). We obiain the follow-
ing by applying the boundary conditions,
_ 3 - 1
fz,o =Cu (l—p—q) ——8'77/Slnh kh—77;p

1
——— 2 + I
5va" (p+a) (38)

1 1
=C‘ 1_ — —_— —_—
820 o(1-p—a) 1679 15vs " (pta)

(39)
where C20=—¥—g/sinh’kh+1/2\/_2_
and C,=- 8\/'(1 +3/sinh*kh).
Similarly, from (35) and (37) we get
f,, =0, (40)
) 41)

We may write

¢=-¢c (. ocos€ +guosing)
4 e (fy ;1,0 cOs 2& +gs0 SIN 28)

+0(e?). (42)

The x-direction particle velocity in the order
of ¢'approaches to —cos ¢ in the farfield
from the bottom.
The steady stream is
o, 3,1

JEE—— W2 2 O s -7
U, eC_‘an eC{4+4e

- (p-q/2)+n (+q)/2V2i.  43a)

This streaming velocity is a tunction of 7, and
independent of the viscosity v. It is wolally a
function of the wave parameiers. When n ap-
proaches to infinity, the steady streaniing
velocity in dimensional form in the order ot €
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U, =Ui|n—-w= 3

Zbe’k’/sinh’ kh. (43b)
This result exactly agrees with what Longuet-
Higgins (1953) has found by using small

amplitude wave motion.

RESULTS AND DISCUSSIONS

A steady flow is developed in the boundary
layer of a flat bottom. This second order
streaming flow is purely driven by the interac-
tion between the oscillatory motion of the
water body at the outside of the boundary
layer and the viscous effect along the bottom
boundary. The direction of this streaming is
the direction of wave propagation and its
magnitude is independent of the viscosity v.
Equation (43a) is the profile of the steady
stream. This is plotted in Fig. 2 as a function
of h/L. As is seen here, the magnitude of the
stream velocity increases with decreasing h/L.
The streaming velocity becomes insignificant
when h/L is greater than 1/5. The detailed
structure of the present solution is somewhat
different from the Longuet-Higgins® (1953).
The peak value of the steady stream for a fix-
ed h/L is about 20% larger than the farfield
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Fig. 2. Profiles of the steady stream velocity (U;) at
each h/L as a function of 7. (Wave height = 1 m; Wave
period = 8 seconds)
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Fig. 3. Farfield steady streara (U;j) at each wave
period as a function of h/L (Wave height = 1 m)

steady stream velocity, U,. This tendency also
appeared on the results of the Longuet-
Higgins, but his maximum value is only about
10% larger than the U,. This discrepancy
seems 10 be due to the wave theories used. The
higher order finite amplitude wave theory is
used for the present study, but the small
amplitude theory is used by Longuet-Higgins.
When 7 goes to infinity, the steady flow in the
boundary layer can be reduced to the same
equation (43b) that Longuet-Higgins has
found. This implys that the two solutions cor-
respond each other in the lowest order.

The steady stream velocities for the exter-
nal waves of 7 to 12 seconds period are plotted
in Fig.3 as a function of h/L. The solid
horizontal lines denote the constant water
depths. For a fixed period wave, the velocity
decreases as h/L increases. For a fixed depth,
the shorter period wave induces slightly slower
stream than the longer period waves.

Let’s consider a range in which a Stockes’
wave applys best. We consider the wave in in-
termidiate depth 0.04 < h/L < 0.5. We
elliminate the depth range which is too
shallow to apply the theory. We also do not
consider the case which is too deep 1o take the
bottom boundary layer into account. For
small kh, we expand sinh? kh of U, and take
the first term only, and get the steady flow as
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follows

U,

I

3 H,, | N I
o2t 4= Jim_ 2 -2
16(}1 )i 3° 3°

(cos U/Vf—%sin 7/V2) —%e’"/ﬁ
{(cos 7n/V2+sin 7/V2)} (44)

When 7 increases, the last three terms in the
braces becomes much smaller as compared to
1, thus, the velocity in shallower region is ap-
proximated as follows

~3 Hye @5)

U=1%'%

Here, we notice that the speed of the farfield
stream is proportional to the phase speed of
the wave and the square of H/h. where h and
H are the water depth and the wave height.
A weak point of the present solution is that
the steady stream velocity (43b) does not agree
with the Stokes drift when z — -h. In order (0
avoid this velocity jump of the steady streams,
we have to find a way that the two velocities
could be matched smoothly. This suggests
that there may be another boundary layer
which will match the two velocities. The study
about this problem is presently going on.

CONCLUSIONS

We tried to clarify the profile of the steady
stream near the bottom boundary in the
presence of a progressive wave of finite
amplitude in the interior of the fluid. The in-
ner boundary layer is developed by the
Reynolds stresses due to the wave action
above and viscosity at the bottom. In this
layer, a steady stream is developed in the
direction of the wave propagation and its
magnitude is a second order quantity. The
stream velocity we have found is independent
of the viscosity, v, but it depends on the wave

parameters and the water depth. The velocity
of the steady boundary layer flow is propor-
tional to the wave phase velocity and the
square of the ratio of wave height to water
depth, H/h. The magnitude of the steady
stream velocily diminishes rapidiy as h/L in-
creases, and il becomes insignificant at
h/L>1/5. For a place of fixed depth, the
shorter period waves induce a slower steady
stream, U,, than the longer period waves. The
maximum speed of the steady stream is about
20% larger than the speed U,. This is
somewhal larger than the value that Longuet-
Higgins (1953) has found.
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