• Title/Summary/Keyword: Flow deflection

Search Result 196, Processing Time 0.03 seconds

Dynamic Behavior of a Simply Supported Fluid Flow Pipe with a Crack (크랙을 가진 유체유동 파이프의 동특성 해석)

  • 유진석;손인수;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.689-694
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported pipe conveying fluid subject to the moving mass. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass and the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The presence of crack results in higher deflections of pipe. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow and the crack severity are increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The time which produce the maximum dynamic deflection of the simply supported pipe is delayed according to the increment of the crack severity.

  • PDF

Instantaneous Deflection calculation Incorporated with Internal Force State Factor In RC short beams(a/d<2.5) (RC 짧은보(a/d<2.5)의 순간처짐 산정에 대한 연구)

  • Oh, Hyun-Chul;Jeong, Jae-Pyong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.713-718
    • /
    • 2001
  • This paper describes an attempt to develop a new equation to calculate deflection for reinforced concrete deep beams(a/d<2.5). The main idea incorporated with this equation is the internal force state factor($\alpha$)which is able to express global state of internal force flow in cracked reinforced concrete beams subjected to shear and bending. A new equation for deflection calculation using internal force state factor($\alpha$)provides more exact result of deflection in reinforced concrete deep beams than the equation predicted by the current code provisions.

  • PDF

Numerical investigations on the along-wind response of a vibrating fence under wind action

  • Fang, Fuh-Min;Ueng, Jin-Min;Chen, J.C.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.329-336
    • /
    • 2002
  • The along-wind response of a surface-mounted elastic fence under the action of wind was investigated numerically. In the computations, two sets of equations, one for the simulation of the unsteady turbulent flow and the other for the calculation of the dynamic motion of the fence, were solved alternatively. The resulting time-series tip response of the fence as well as the flow fields were analyzed to examine the dynamic behaviors of the two. Results show that the flow is unsteady and is dominated by two frequencies: one relates to the shear layer vortices and the other one is subject to vortex shedding. The resulting unsteady wind load causes the fence to vibrate. The tip deflection of the fence is periodic and is symmetric to an equilibrium position, corresponding to the average load. Although the along-wind aerodynamic effect is not significant, the fluctuating quantities of the tip deflection, velocity and acceleration are enhanced as the fundamental frequency of the fence is near the vortex or shedding frequency of the flow due to the occurrence of resonance. In addition, when the fence is relatively soft, higher mode response can be excited, leading to significant increases of the variations of the tip velocity and acceleration.

A Deflection Routing using Location Based Priority in Network-on-Chip (위치 기반의 우선순위를 이용한 네트워크 온 칩에서의 디플렉션 라우팅)

  • Nam, Moonsik;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.108-116
    • /
    • 2013
  • The input buffer in Network on Chip (NoC) router plays a key role in on-chip-network performance, which is utilized in flow control and virtual channel. However, increase in area and power due to input buffers as the network size gets larger is becoming severe. To solve this problem, a bufferless deflection routing without input buffer was suggested. Since the bufferless deflection routing shows poor performance at high network load, other approaches which combine the deflection routing with small size side buffers were also proposed. Nonetheless these new methods still show deficiencies caused by frequent path collisions. In this paper, we propose a modified deflection routing technique using a location based priority. In comparison with existing deflection routers, experimental results show improvement by 12% in throughput with only 3% increase in area.

Development of the controller for peeling off the enamel and forming of deflection yoke coil (편향요크코일의 에나멜 탈피 및 통전성형을 위한 탈피통전기의 개발)

  • Jeong, Soo-Hoa;Yun, Jong-Soon;Kwon, Woo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.202-205
    • /
    • 1995
  • Developed controller is the part of deflection yoke winding machine which controls the power to form the deflection yoke coil into desired shape after winding. So as to form the deflection yoke coil, it is needed to melt the bonding material which is spreaded on the coil. The heat melt the bonding material which is produced by flowing the current through the winded coil. Therefore, at first it is needed to peel off the enamel from the winded coil so as to flow the current, and then supply the power to produce the heat which form the winded coil into desired shape. Naturally developed controller is composed of the peeling part and the conduction and forming part. All of them consist of the inverter structure and control the output current. The peeling is achieved by low voltage and high AC current, the conduction and forming is by DC current. Developed controller also has a function that detect the resistance of the deflection yoke coil to prevent the damage of the load which is produced by poor peeling.

  • PDF

Predicting BVI Loadings and Wake Structure of the HARTII Rotor Using Adaptive Unstructured Meshes

  • Yu, Dong-Ok;Jung, Mun-Seung;Kwon, Oh-Joon;Yu, Yung-H.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • The flow fields around the HARTII rotor were numerically investigated using a viscous flow solver on adaptive unstructured meshes. An overset mesh and a deforming mesh technique were used to handle the blade motion including blade deflection, which was obtain from the HARTII experimental data. A solution-adaptive mesh refinement technique was also used to capture the rotor wake effectively. Comparison of the sectional normal force and pitching moment at 87% radial station between the two cases, with and without the blade deflection, showed that the blade loading is significantly affected by blade torsion. It was found that as the mesh was refined, the strength of tip vortex is better preserved, and the magnitude of high frequency blade loading, caused by blade-vortex interaction (BVI), is further magnified. It was also found that a proper time step size, which corresponds to the cell size, should be used to predict unsteady solutions accurately. In general, the numerical results in terms of the unsteady blade loading and the rotor wake show good agreement with the experimental data.

The Effect of Chamber Bottom Shape on Die Elastic Deformation and Process in Condenser Tube Extrusion (접합실 바닥형상이 컨덴서 튜브 직접압출 공정 및 금형탄성변형에 미치는 영향)

  • Lee, Jung-Min;Kim, Byung-Min;Jung, Young-Deuk;Cho, Hoon;Cho, Hyung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

Experimental investigation on flow field around a flapping plate with single degree of freedom

  • Hanyu Wang;Chuan Lu;Wenhai Qu;Jinbiao Xiong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1999-2010
    • /
    • 2023
  • Undesirable flapping motion of discs can cause the failure of swing check valves in nuclear passive safety systems. Time-resolved particle image velocimetry (PIV) was employed to investigate the flow characteristics around a free-to-rotate plate and the motion response, with the Reynolds numbers, based on the hydraulic diameter of the channel, from 1.32 × 104 to 3.95 × 104. Appreciable flapping motion (±3.52°) appeared at the Reynolds number of 2.6 × 104 with the frequency of 5.08 Hz. In the low-Reynolds-number case, the plate showed negligible flapping. In the high-Reynolds-number case, the deflection angle increased with reduced flapping amplitude. The torque from the fluid determined the flapping amplitude. In the low-Reynolds-number case, Karman vortices were absent. With increasing Reynolds numbers, Karman vortices developed behind the plate with larger deflection angles. Strong interaction between the wake flow from the leading and trailing edge of the plate was observed. Based on power spectrum density (PSD) analysis, the vortex shedding frequency coincided with the flapping frequency, and the amplitude was positively correlated to the strength of the vortices. Proper orthogonal decomposition (POD) modes evince that, in the case of appreciable motion, coherent structures exhibited a larger spatial scale, enhancing the magnitude of the external torque on the plate.

Transonic flow past a Whitcomb airfoil with a deflected aileron

  • Kuzmin, Alexander
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.210-214
    • /
    • 2013
  • The sensitivity of transonic flow past a Whitcomb airfoil to deflections of an aileron is studied at free-stream Mach numbers from 0.81 to 0.86 and vanishing or negative angles of attack. Solutions of the Reynolds-averaged Navier-Stokes equations are obtained with a finite-volume solver using the $k-{\omega}$ SST turbulence model. The numerical study demonstrates the existence of narrow bands of the Mach number and aileron deflection angles that admit abrupt changes of the lift coefficient at small perturbations. In addition, computations reveal free-stream conditions in which the lift coefficient is independent of aileron deflections of up to 5 degrees. The anomalous behavior of the lift is explained by interplay of local supersonic regions on the airfoil. Both stationary and impulse changes of the aileron position are considered.

Dynamic model of hinge deflection in fluid flow (유동 내 굽힘이 발생하는 힌지의 역학 모델)

  • Minho Song;Janggon Yoo;Daegyoum Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.40-46
    • /
    • 2023
  • For application to drag-based propulsion system, the dynamics of a segmented structure with multiple hinges undergoing oscillatory motion are investigated. The side flaps are connected to a centre rod with elastic plates acting as hinges. The hinges bend to only one direction so that the structure behave asymmetrically between the power stroke and the recovery stroke. An analytical model is proposed, which estimates the asymmetric deformation of the segmented structure coupled with hinges. Using the proposed model, the effects of key geometric and kinematic parameters on the dynamics of the structure are analyzed.