• Title/Summary/Keyword: Flow contour

Search Result 197, Processing Time 0.038 seconds

Study on the Numerical Simulation of Debris Flow due to Heavy Rainfall (집중 강우에 따른 토석류 유출의 수치계산)

  • Kim, Jung-Han;Min, Sun-Hong;Kang, Sang-Hyeok
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.389-395
    • /
    • 2009
  • In spite of many numerical analysis of debris flow, a little information has been found out. In this paper the watershed is divided to apply rainfall runoff and to estimate debris flow integrating flow and soil article. We use the contour data to extract spatially distributed topographical information like stream channels and networks of sub-basins. A Quasi Digital Elevation Model (Q-DEM) is developed, integrated, and adopted to estimate runoff based on marked one. As a results, it has been found out that the debris flow was close to observed flow hydrograph. Because debris flow is finished in 30 second, it is important that we have to prepare its prior countermeasure to minimize the damage of debris flow. The GIS-linked model will provide effective information to plan river works for debris flow.

  • PDF

Experimental Study on the Effects of Upstream Periodic Wakes on Aerofoil-Boundary Layer and Loss (주기적 상류 후류의 익 경계층과 손실에 미치는 영향에 대한 실험적 연구)

  • Rim, In-Won;Cho, Kang-Rae;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.661-667
    • /
    • 2001
  • This paper is concerned with the effects of periodically approaching upstream wakes on cascade-flow and loss. The reduced frequency of the periodic wakes was varied in the narrow range from 0.5 to 0.7. According to a wake-passing through the cascade, two velocity deficits appear near the boundary layer contour in the downstream from about 60% chord-length. The first velocity deficit is caused by a periodic wake and the second one appears after some delayed time. The second velocity deficit may be interpreted as the results of reattachment of flow-separation. The higher reduced frequency decreases the duration time of separation appearance and the lesser loss of aerofoil is resulted.

  • PDF

Lift and Drag of a Circular Cylinder by the Discrete Vortex Method (이산 보오텍스법에 의한 원주의 양력 및 항력)

  • D.K.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.40-46
    • /
    • 1990
  • Expressions for the lift and the drag exerted on a circular cylinder by an unsteady flow of an ideal fluid with embedded discrete vortices are derived. The formulae can be used in the discrete vortex method of flow simulation. These formulae are derived via contour integration on the complex plane. Terms have been produced which are significantly different from those in Sarpkaya's formulae. These are expected to bring a change to the forces obtained so far.

  • PDF

Study on a post-processing program for flow analysis based on the object-oriented programming concept (객체재향 개념을 반영한 유동해석 후처리 프로그램에 대한 연구)

  • Na J. S.;Kim K. Y.;Kim B. S.
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2004
  • In the present study, a post-processing program is developed for 3D data visualization and analysis. Because the graphical user interface(GUI) of the program is based on Qt-library while all the graphic rendering is performed with OpenGL library, the program runs on not only MS Windows but also UNU and Linux systems without modifying source code. The structure of the program is designed according to the object-oriented programming(OOP) concept so that it has extensibility, reusability, and easiness compared to those by procedural programming. The program is organized as modules by classes, and these classes are made to function through inheritance and cooperation which is an important and valuable concept of object-oriented programming. The major functions realized so far which include mesh plot, contour plot, vector plot, streamline plot, and boundary plot are demonstrated and the relevant algorithms are described.

Numerical Analysis of tunnel overbreak influenced by delay time accuracy of detonator (뇌관의 시차 정밀도가 터널 여굴에 미치는 영향 수치해석)

  • An, Bong-Do;Kang, Dae-Woo
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2009.03a
    • /
    • pp.73-82
    • /
    • 2009
  • In order to find that how differences of delay time accuracy of ms,ds detonator applied to tunnel contour influences overbreak in tunnel blasting, it was analyzed using common program(Itasca CG, 2004)which was developed by individual factor method called "Partical Flow Code 2D(PFC2D). In result, overbreak and damage of country rock were reduced when the delay was more accurate than the inaccurate.

  • PDF

Multi-Point Aerodynamic Shape Optimization of Rotor Blades Using Unstructured Meshes

  • Lee, Sang-Wook;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.66-78
    • /
    • 2007
  • A multi-point aerodynamic shape optimization technique has been developed for helicopter rotor blades in hover based on a continuous adjoint method on unstructured meshes. The Euler flow solver and the continuous adjoint sensitivity analysis were formulated on the rotating frame of reference. The 'objective function and the sensitivity were obtained as a weighted sum of the values at each design point. The blade section contour was modified by using the Hicks-Henne shape functions. The mesh movement due to the blade geometry change was achieved by using a spring analogy. In order to handle the repeated evaluation of the design cycle efficiently, the flow and adjoint solvers were parallelized based on a domain decomposition strategy. A solution-adaptive mesh refinement technique was adopted for the accurate capturing of the wake. Applications were made to the aerodynamic shape optimization of the Caradonna-Tung rotor blades and the UH-60 rotor blades in hover.

Numerical Simulation of Dendritic Growth of the Multiple Seeds with Fluid Flow (유체 유동을 동반한 다핵 수치상결정의 미세구조성장에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.469-476
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material thus the physical properties of final product. In this paper, effect of fluid convection on the dendrite solidification morphology is studied using Level Contour Reconstruction Method. Sharp interface technique is used to implement correct boundary condition for moving solid interface. The results showed good agreement with exact boundary integral solution and compared well with other numerical techniques. Effects of Peclet number and undercooling on growth of dendrite tip of both single and multiple seeds have been also investigated.

Numerical Analysis of Flow Path inside the Feedwater Valve (급수밸브 내부의 유동경로 수치해석)

  • Kwag, Seung-Hyun;Won, Yong-Hee
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.416-419
    • /
    • 2006
  • Numerical analysis is carried out to identify the wall thinning effect inside the feed water valve. The finite volume method is applied to make analysis for the viscous flows. The commercial cock FLUENT is used for the simulation and the GAMBIT for the grid generation. The RNG $\kappa-\varepsilon$ model is used for the turbulence and the tet-hybrid grid is applied for the modeling. The velocity vector, the pressure contour, the change of residual along the iteration number, and the dynamic head are predicted for the hydrodynamic investigation.

  • PDF

A study on the change of turbulence structure in a diffuser (확대관의 난류구조 변동에 관한 연구)

  • Lee, Jang-Hwan;Han,Yong-Un
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.503-508
    • /
    • 1997
  • The change of the structure of homogeneous turbulence subject to irrotational strains has been studied in an anti-Morel type diffuser (center matched cubic contour) using the hot wire anemometry. It was observed that the profiles of mean velocities and turbulence velocities along the center line were stable at the entrance region but rapidly changed near the matching point. The wall induced turbulence at the entrance region grows fast and was diffused toward the center at downstream. It was also observed that the axial turbulence grows faster than the radial one in the middle region of the diffusing flow and that the diffusing process has the vortex compression mechanism due to the conservation of angular momentum. These phenomena are frequently observed at the initial flow region of the free jet.

Improvement of the Performance of the Supersonic Abrasive Blasting Nozzle (초음속 연마가공 노즐의 성능개선에 관한 연구)

  • Kwak, Ji-Young;Jeon, Ik-Jun;Park, Se-Eun;Lee, Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.9-15
    • /
    • 2016
  • The dynamics of gas-particle flow from a supersonic abrasive blasting nozzle have been studied by 1-D analytical calculation, including wall friction effects inside the nozzle. The developed code in the present study shows a satisfactory agreement with the other study's results. By utilizing the code, the redesign and optimization of the inner contour of a commercial abrasive blasting nozzle were carried out, and it was found that the redesigned nozzle in the present study can produce faster particle velocities at the nozzle exit by up to 22% compared with the original commercial nozzle.