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Lift and Drag of a Circular Cylinder by the Discrete Vortex Method
by

Abstract

Expressions for the lift and the drag exerted on a circular cylinder by an unsteady flow of
an ideal fluid with embedded discrete vortices are derived. The formulae can be used in the
discrete vortex method of flow simulation. These formulae are derived via contour integration
on the complex plane. Terms have been produced which are significantly different from those
in Sarpkaya’s formulae. These are expected to bring a change to the forces obtained so far.
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s : strength of the #&-th vortex (positive
Notations anticlockwise)
u,v . z— and y- components of velocity res-
. the imaginary unit pectively
I meaning image vortex when used as a XY . z- and y- components of force exerted
subscript on a unit length of the cylinder by the
. time-dependent free stream velocity, assu- fluid respectively
med to be in the positive x-direction P : density of the fluid
. radius of the circular cylinder n : number of the nascent vortices
. number of the discrete vortices shed up : meaning nascent vortex when used as a
to the time ¢ subscript
. position of the k-th vortex at the time ¢ I : strength of the 2-th nascent vortex
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Zink . position of the image of the %-th nascent
VOrteX, Zine==ZinkTI¥ink

(7ns, Ox1) : position of the k-th nascent vortex (polar

description)

Uk, Vi : z- and y- components of the velocity of
the k-th vortex respectively

#in, vir . z- and y- components of the velocity of
the image of the k-th vortex respectively

DL : drag and lift exerted on a unit length of

the cylinder by the fluid respectively

1. Introduction

In recent decades, simulation of fluid flow by
means of discrete vortices has attracted increasing
attention, and has been developed in the case of a
two-dimensional problem, to a stage of wide applica-
tion. The region of rotational flow (i.e. the boundary
layer and the wake) is approximated by a number
of lumped discrete vortices replacing, thereby, the
real flow by the flow of an ideal fluid with embedded
discrete point vortices. The force exerted on the body
by the fluid can be obtained by the application of the
Bernoulli's theorem in this flow model.

A specific expression for the force in terms of the
relevant parameters can be derived in the case of a
circular cylinder placed in a spatially uniform but
unsteadv flow. Sarpkaya dealt with this problem
twice.(1.22 In his former work, he obtained the
formulae by the use of the Blasius’ theorem extended
by Milne-Themson. The formulae are elegant and
convenient for use. However, one term concerned
with the growth rate of vortices is not clear and
most users of these formulae seem to ignore it on
account of constancy of vortex strength, once it is
shed in an ideal fluid. In his latter work, he tried
to clariiv this term rectifying the concept of growth
by confining this concept to the nascent vortices
only. In the process of development, however, the
integral of complex logarithmic function was not
treated properly. The contour integral was integrated
along what he called the feeding zone only, leaving,
consequently, the parameters concerned with this

zone in the final expression for the force. The defin-
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ition of feeding zone might be useful if one wishes
to relate the role of the nascent vortices with the
separation process but as far as the integration is
concerned one need not rely on such an artifice.
This problem has been once more dealt with in
the present paper. The nascent vortices are supposed
to represent the generation of vorticity at, or the
shedding of vortices from, the surface of the cylinder.
How the flow phenomena are modelled by them is
not directly relevant although the concept of a
multiple, nascent vortex representation of the boun-
dary layer has been suggested. The major term at
issue, which is the time-derivative of the integral of
the complex potential, has been treated in a coherent

context.

2. Derivation of the expression for
the force

A circular cylinder of radius e is supposed to be
placed in a time-dependent spatially uniform flow of
incompressible inviscid fluid. A frame of Cartesian
coordinates, with its origin at the centre of the
cylinder and the z-axis parallel to the vniform flow,
is employed for the description of the flow (Fig. 1).
Suppose there are a number of discrete vortices
around the cylinder whose strengths, instantaneous
positions and instantaneous velocities are assumed to
be known. The number should be taken as a function
of time, increasing by a fixed number, say =, at a
time interval (however small this interval may be).
This increment denotes the number of so-called
nascent vortices introduced on every time step as
usual in the discrete vortex method. The normal
boundary condition is satisfied if the image vortices,
whose strengths and positions are determined by
Milne-Thomson’s circle theorem,(3) are impcsed.
Then the complex potential describing the flow field
will be

w(z,t):U(z>(z+i:—)
i Niz)
— Z Ii(loglz—=:(8)]
T k=1
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Fig. 1 A circular cylinder in a uniform flow
where
2
Z.k(l):";? : position of the image of the £-th
vortex (2
N
Fﬂ(t):k;lrk 3

The velocity at an arbitrary, nonsingular field
point is given in conjugate form by the derivative

of this complex potential

u(z,t)—iv(z,t):j—z:_—_U(l_:_:)
ENEE e ) e @

2%k

The velocity by which the m-th vortex moves is

un(0) ~inn(=U(1——27 )
% [ﬁ_l "<77 147[“ Zmizi» )
k=m
Sl ®

The extended Blasius theorem appears, in our

particular problem, as
. 1. dw \? . 0 g
X—zY:-2* zp‘{C(—?) dz+tp7§cwdz (6)
where C : contour of the circle

The first integral of eq. (6) can, according to the

Cauchy-Goursat theorem, be evaluated from
N I dw \?
Xi—il= 2 lpj;c( dz )dz

— Ll (Y f § (2 Ve @

C.. . contour of large radius enclosing all the
singularities
C; : contour of small radius enclosing the k-th

vortex only
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Since,
e TGy O™
as] 2] —s00 ®
( d )gUL%QE—w(xzr?) aslz] > (9)
we obtain
§ (Y ar=2urs 10

To deal with the second term in the brackets of
eq. (7), let us consider the contour C,, enclosing the
m-th vortex. For any z at the neighbourhood of 2,

we can write,

( dw )2:_ Tl il {U‘/I—i>

Tdz 4z (z—2,)? T \ 2?

I R S TR S Im
T o= [,Z=1F*< Z—Zp - X Zix )* Z—Zim ]

kZm

—1 ae (1)

2az 22—

A }
where 2(z) is an analytic function on, and inside,
the contour C,. Note that the expression within
the curly brackets tends to the velocity at the
position of the m-th vortex (i.e. un—ivs) as z—2zn.

The use of the Cauchy integral formula then yields
§ o (G dz=r wln—iva) (12)

Collecting these results, we have
N N
Xl_iYIZ_P Z_:lpmvm_:i.a Z—IFM( U_um) (13)

Since the integrand of the second term on the
right hand side of eq. (6) does not possess the
property shown in eq. (8), the choice of contour
should be sought on, or within, the circle as appro-
priate for the individual case. Let us denote this
term as X,—7iY, but

instead, for convenience,

evaluate the conjugate of this term as follows:
X2+in:~ip‘gT§dez (14)

In the process of manipulating this expression, the
following points should be borne in mind:

1. The total number of vortices changes with time
to take into account the newly shed vortices in the
time interval, 4¢, the increase being equal to the
number of nascent vortices;

2. The strength of each vortex shed previously is
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an invariant quantity;

3. The contour surrounding an image vortex
moves with it so that the contour encloses the
concerned image vortex only all the time.

Then the terms in eq. (1) will appear as the

following when they are inserted in eq. (14).

2
2.4 IO+ Vdz=25ia2- 97 (15)
F) Ny
W'ﬁfc Ell’klog[z—zk(t)]dzzo (16)
N
“aaTchE Tloglz—z:4(8))dz

N
= —27!1";1 IiQuip+ivig)

+2xi Z - (aettn—z;4) ant
5% f I's($)logzdz=2xi Z A eitn asyt
where
. 2
‘Zz;k -_—uik‘i“ivik:-_;—F (ur—ivy) 19

in which dI',:/dt denotes the rate of growth in
strength of the %-th nascent vortex Involvement of
this growth rate makes the present force formulae
different from those obtained by Sarpkaya. For a
vortex outside the cylinder, there are two correspon-
ding vortices, one the image vortex (determined by
the circle theorem) and the other the vortex of the

same strength at the origin (to satisfy the far field

&
o4

condition). These three vortices constitute a set. The
same branch cut for the three vortices in any one
set should be used for the evaluation of the integrals
of logarithmic functions in eq.(17) and eq. (18).
The simplest choice is the radial line stretching to
infinity from the branch points, that is, 6=#,, for
the k-th nascent vortex set (Fig. 2).

Inserting the expressions eq. (15) - eq. (14), we
have

: U g
Xoti¥e=o(@rat G+ 3 1w

n d[”l’L 3 N
TR v ie( T T
” dI’,,
+Z 5 x:nk) (20>
k=1
and finally
aUu
D:X1+X2:p[2ﬂd2 dt
dF,
+ E Taoa—v)+ e Yint] (21>

N
L= Y1+ Y2: —p[:éxl’*(U-i-u,-.-—uk)

+ ?":1 L x.-nk] (22)

It is to be noted that N represents the number of
all the vortices introduced up to the concerned time,
hat is, the number of vortices shed already plus the
number of nascent vortices just introduced.

The strength of nascent vortices is determined

55
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(i) individual branch cut

(il) effective branch cut for (ii)

o)
(-

) cfTective branch cet for the set

the vortex & its immage only
{ relevant to eq.{17) )

Fig. 2 The branch cuts

t see the Appendix.
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Fig. 3 The tangential velocity and the strength of
a nascent vortex

frequently so that the no slip condition is satisfied
on the cylinder surface. However, the way of
satisfying the condition can differ depending on the
flow simulation model and the analysis technique
employed by the investigator to tackle a particular
problem. The model(4] of fixed separation point with
one nascent vortex on each side of the cylinder and
the model(5] of multi-nascent vortices equally spaced
around the cylinder are typical examples. An alter-
native way of determining the strength of nascent
vortex is use of the concept of vorticity shedding
rate as can be found in, for instance, Clements’
work 6], In either of the ways, it should be possible
to define the growth rate of the strength of nascent
vortex, which can be expressed usually in terms of
the rate of change of the tangential velocity on the
cylinder surface. As an example, take the multi-
nascent vortex model in which each strength is set
equal to the local instantaneous tangential velocity
on the cylinder surface multiplied by the girth of the
segment which the nascent vortex is to represent,
i.e.
o= uiar 234004 (see Fig. 3) (23)
Incidentally, it can be shown[7] that this way of
setting the strength of nascent vortices can satisfy
the no slip condition exactly for a distribution of
tangential velocity of the form w,,ocsin 6, (i.e. the
free stream over a circular cylinder), and approxi-
mately for a distribution of arbitrary from(8]. Now
if eq.(23) is accepted for determination of the strength
of nascent vortices, '

dar, di
dtk =140 ;;k @

where dun/dt is to be interpreted as the rate of
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variation of the tangential velocity at the point
corresponding to the k-th nascent vortex due to the
motion of vortices shed already and due to the
change of the velocity of the free stream. It can be
calculated from

[y 10, )

——Z-d;tj—sm Oz

. N .
T, U+ 1Um
+Im( o e""‘mL:]Fm{ (e tm—z,)?
u,-m-i-iv.-,,.
ey ) (25)

Eq.(24) in connection with eq.(25) can be used for
the rate of change of the nascent vortex in eq.(21)
and eq.(22) to produce the drag and the lift.

3. Conclusion

In Sarpkaya’s work(1], a term in the expression
for the drag or the lift is given as the sum of image
vortex coordinates multiplied by the rate of change
of their strengths. This term can have a non zero
value 1) when the strength of the vortex changes
with time due to, for instance, diffusion or 2) if
some vortices are artificially removed from the flow
field which can be taken accounted of as the rate of
vortex decay.

It is frequently taken for granted that the fluid is
an ideal one in the application of the discrete vortex
method to simulate a real flow. The reason is that
this assumption is logically in harmony with the
existing set of rules about vortex kinematics. Altho-
ugh incorporation of the diffusion effect into the
the method is

strength of any individual vortex is rarely allowed

analysis by sometimes tried, the
to change. Hence, the frequent neglect of the term
by the users of the formulae may be quite excusable
due to the constancy of vortex strength.

The fact that the meaning of this term should be
sought from the nascent vortices only, was admitted
in Sarpkaya’s later work(2], though this interpreta-
tion was not implied in the former. This development
was an improvement but unfortunately the derivation

was again hampered by incorrect evaluation of the
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contour integral producing a formula not readily
acceptable by the users. It appears to be gquite fair
to say that his former formulae are more frequently
used than his latter one just because of the compli-
cated appearance of his feeding zone parameters.

It has been shown in the present paper that a term
to account for the effect of continuous creation of
vorticity at the cylinder surface should be included
in the force calculation. This term is missing in
Sarpkaya’s former study and is given, but with an
unnecessary extra term, in his latter study. The term
can produce a significant change to the values of the
force obtained by the use of his former, or latter,
formulae. To be consistent with the usual postulation
in the discrete vortex method, variation of vortex
strength, once the vortex is shed, is precluded in

the present study.
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Appendix

Al. Time-derivative of the contour integral of the complex logarithmic function

2 N o1 N
"37§C k;l I’klog[z~m(t)]dz=£}§%77{fclgll‘klog[z—wu(t%-dt)]dz

» dr, N
+ § i e log(z—zia)dz— 3? g 1og[z—z.-,,(t>]dz}

_ dZ,'/, dz L dp,,k

—kg Fk<_ dt C X—Zip +¢Z=| dt §610g(z~zmk)dz
N ”

=2}, Fk(llik+ivik)+2ﬂ'i > dgt”k (ae""u—z;,,;,)
k=1 k=1

which is eq.(17).

A2. The contour integral of the complex logarithmic function

From this diagram
z—z;=re'® where r(8)=[a%+r?—2ar; cos(6—6,)]1"?
. a . _
a(0)=sm“[7 sm(e——ﬂ,,)] + Oy 0<a<2z

It is to be noted that « and 6 are of one-to-one correspondence and that, when 6 increases by 2z, so
does a.

Since a complex logarithmic function is multi-valued, let us take a branch cut at a=ap and let 6=6,
correspond to a=a,. Then,

§Clog(z——z.-)a'z= [(z—z,-)log(z-z,—) — (z—zi)}

aei 0st20)
ae't
=[ (e —2) (log r(6) + ia(6) +2kri) — (e —2) |
where k. arbitrary integer
=(ae's—z;)[log r(6y+2r) —log r(6g) +ia(fe+27) —ia(6)]
=2ri(aet—z;)
since(by examination of the diagram),
roo+27)=r(6p)
a(f+2x) =a(fo) + 27
If the branch cut is taken at a=6=46,, by putting 6,=0, in the above equations, the right hand side of
eq.(18) and the second term of the right hand side of eq.(17) are obtained.
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