• 제목/요약/키워드: Flow computation

검색결과 986건 처리시간 0.021초

이중시간전진법과 k-$\omega$ 난류모델을 이용한 익렬 내부 비정상 유동해석 (Unsteady cascade flow calculations of using dual time stepping and the k-$\omega$ turbulence model)

  • 최창호;유정열
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1624-1634
    • /
    • 1997
  • A numerical study on two-dimensional unsteady transonic cascade flow has been performed by adopting dual time stepping and the k-.omega. turbulence model. An explicit 4 stage Runge-Kutta scheme for the compressible Navier-Stokes equations and an implicit Gauss-Seidel iteration scheme for the k-.omega. turbulence model are proposed for fictitious time stepping. This mixed time stepping scheme ensures the stability of numerical computation and exhibits a good convergence property with less computation time. Typical steady-state convergence accelerating schemes such as local time stepping, residual smoothing and multigrid combined with dual time stepping shows good convergence properties. Numerical results are presented for unsteady laminar flow past a cylinder and turbulent shock buffeting problem for bicircular arc cascade flow is discussed.

주행조건에서의 자동차 모델 항력에 대한 수치해석적 연구 (Numerical Study on the Drag of a Car Model under Road Condition)

  • 김범준;강성우;최형권;유정열
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1182-1190
    • /
    • 2003
  • A parallelized FEM code based on domain decomposition method has been recently developed for large-scale computational fluid dynamics. A 4-step splitting finite element algorithm is adopted for unsteady flow computation of the incompressible Navier-Stokes equation, and Smagorinsky LES model is chosen for turbulent flow computation. Both METIS and MPI Libraries are used for domain partitioning and data communication between processors, respectively. Tiburon model of Hyundai Motor Company is chosen as the computational model at Re=7.5 $\times$ 10$^{5}$ , which is based on the car height. The calculation is carried out under both the wind tunnel condition and the road condition using IBM SP parallel architecture at KISTI Super Computing Center. Compared with the existing experimental data, both the velocity and pressure fields are predicted reasonably well and the drag coefficient is in good agreement. Furthermore, it is confirmed that the drag under the road condition is smaller than that under the wind-tunnel condition.

천수역 선체 부가질양에 대한 추정 근사식에 관한 연구 (The Prediction of the Hydrodynamic Coefficients of Added Mass for Ship in Shallow Waters)

  • 이윤석;김순갑;조익순
    • 한국항해학회지
    • /
    • 제24권3호
    • /
    • pp.123-132
    • /
    • 2000
  • In order to improve the ship maneuverability, It is important to estimate precisely the hydrodynamic coefficients of added mass forces acting on a ship especially in shallow waters, and simple methods for predicting such hydrodynamic forces Is also very desirable. In the previous paper using 3-Dimension potential flow theory, it has been demonstrated that potential calculation is available to estimate added mass coefficients. The present work is aimed at the suggestion of the simplified formulas for predicting the translation and lateral motion of added mass coefficients in shallow water. So, 3-D potential flow theory is also used to calculate the added mass coefficients in deep and shallow waters for Series 60 model which has 5 different kinds of block coefficients (0.6-0.8), SR196 model and T/S HANNARA. After some series computation, simplified formulas for Predicting the added mass force in shallow waters is suggested based on the computation results of Series 60 model. The formulas consist of the combination of principal dimensions and the water depth; d/B, Cb, d/H. The predicted results are compared with the Computation results for SR196 model and T/S HANNARA. The precision of predicted results by simplified formulas are good enough for the practical use. (d/B : draft-Breadth ratio, d/H draft-Water depth ratio, Cb : Block coefficients).

  • PDF

수정된 밀도함수법을 이용한 고정된 반잠수식 해양구조물 주위 유동의 수치시뮬레이션 (Numerical Simulation of Flow around a Fixed Semi-submersible Offshore Structure Using the Modified Marker-density Method)

  • 하윤진;이영길;정광열;양인준
    • 대한조선학회논문집
    • /
    • 제53권1호
    • /
    • pp.1-9
    • /
    • 2016
  • It is important to research and understand the physical phenomenon around a semi-submersible offshore structure on waves and currents because the wave run-up and load occurs owing to the waves and currents. In this study, the numerical simulations are performed about flow around a fixed semi-submersible offshore structure. The Modified Marker-density method is adopted in the present computation procedure, this method is one of the various methods to define the free-surface. The present computation results are compared with existing experimental and numerical simulation(VOF method) results. And, the computation results are relatively coincident with the existing results of model test and numerical simulation by VOF method.

정규격자계와 4단계 Range-Kutta법을 사용한 Wigley선형 주위의 난류유동계산 (Computation of Turbulent Flow around Wigley Hull Using 4-Stage Runge-Kutta Scheme on Nonstaggered Grid)

  • 반석호;김형태
    • 대한조선학회논문집
    • /
    • 제31권3호
    • /
    • pp.87-99
    • /
    • 1994
  • Reynolds Averaged Navier-Stokes 방정식을 수치해석하여 Wigley 선형 주위의 난류유동을 계산하였다. 정규격자상에서 공간의 이산화는 2차 정도의 유한차분법을, 시간의 적분에는 4단계 Runge-kutta법을 이용하였다. 시간 증분을 크게 하기 위하여 Jameson의 잔류항 평균 기법을 사용하였다. 압력 Poisson 방정식으로부터 압력장을 구하였고 난류닫음 조건을 만족시키기 위하여 Baldwin-Lomax의 난류 모형을 사용하였다. 수치계산은 레이놀드수가 $4.5{\times}10^6$에서 수행하였고 계산된 속도와 압력분포는 실험 결과와 비교적 잘 일치하는 것을 확인하였다.

  • PDF

Synthetic Jet 출구 형상의 변화에 따른 유동 특성 파악을 위한 수치적 연구 (Numerical Study on Flow Characteristics of Synthetic Jet with Slot Exit)

  • 김민희;김우례;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.356-361
    • /
    • 2011
  • The flow characteristics of synthetic jet depending on rectangular and circular jet exit configuration are investigated using numerical computation with cross flow. In rectangular slot, synthetic jet generates the strong vortex, however, supply fewer momentum and effectiveness of flow control is reduced along flow direction. In circular slot, regular vortex is fanned from slot center to end and developed in flow direction. It affects the wider region than rectangular slot. The distribution of wall shear stress is considered in order to indicate the effectiveness of flow control device for flow separation delay. As a result, circular slot is a more suitable candidate for delaying flow separation.

  • PDF

비정상 Navier-Stokes 방정식의 수치해석을 위한 다단계 외재법의 성능 비교 (Comparison of multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations)

  • 서용권
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.202-212
    • /
    • 1997
  • In this study, performance of the multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations is investigated. Three methods under consideration are 1 st-, 2 nd-, and 4 th-order Runge-Kutta (R-K) methods. Compared in this estimation is stability, accuracy, and CPU time of each method. The computational codes developed are applied to the two-dimensional flow in a square cavity driven by an oscillating lid. It turned out that at Reynolds number 400, the 1 st-order R-K method is the best, while at 3200 the 2 nd-order R-K is recommended. At higher Reynolds numbers, it is conjectured that the 4 th-order R-K method will be the best algorithm among three due to its highest stability.

빠르게 전개되는 스포일러의 비정상 유동해석 (Unsteady Flow Computation of a ]Rapidly Deploying Spoiler)

  • 최성욱;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.127-139
    • /
    • 2000
  • Transient aerodynamic response of an airfoil to a rapidly deploying spoiler is numerically investigated using a two-dimensional turbulent compressible Navier-Stokes flow model. The spoiler moving relative to a stationary airfoil is treated by an overset grid bounded by a 'dynamic domain-dividing line' the concept of which is developed first..in this paper. The fluid-dynamic mechanism of the adverse lift due to the rapidly deploying spoiler is analyzed. Also the effect of spoiler deploying rate on the initial behavior of the aerodynamic response is expounded, which is of interest in view of active control technology and controller design for the spoiler. The results of present computation about the stationary as well as moving spoilers are relatively in good agreement with the existing experimental data.

  • PDF

Numerical Simulation of Natural Convection in Annuli with Internal Fins

  • Ha, Man-Yeong;Kim, Joo-Goo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.718-730
    • /
    • 2004
  • The solution for the natural convection in internally finned horizontal annuli is obtained by using a numerical simulation of time-dependent and two-dimensional governing equations. The fins existing in annuli influence the flow pattern, temperature distribution and heat transfer rate. The variations of the On configuration suppress or accelerate the free convective effects compared to those of the smooth tubes. The effects of fin configuration, number of fins and ratio of annulus gap width to the inner cylinder radius on the fluid flow and heat transfer in annuli are demonstrated by the distribution of the velocity vector, isotherms and streamlines. The governing equations are solved efficiently by using a parallel implementation. The technique is adopted for reduction of the computation cost. The parallelization is performed with the domain decomposition technique and message passing between sub-domains on the basis of the MPI library. The results from parallel computation reveal in consistency with those of the sequential program. Moreover, the speed-up ratio shows linearity with the number of processor.

밀도 성층 유동 해석을 위한 가상 경계법 (An Immersed Boundary Method for Simulation of Density-Stratified Flows)

  • 윤동혁;양경수
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.940-947
    • /
    • 2005
  • An immersed boundary method for simulation of density-stratified flows has been developed and applied to computation of viscous flows past three different types of obstacle under table density stratification, namely laminar flows past a vertical barrier, a cosine hill, and a sphere, respectively. Density forcing is introduced on the body surface or inside the body. Significant changes in flow characteristics are observed depending on Fr. The numerical results are in good agreement with other authors' experimental and numerical results currently available, and shed light on computation of density-stratified flows in complex geometries.