• Title/Summary/Keyword: Flow area

Search Result 5,196, Processing Time 0.038 seconds

Sapflux Measurement Database Using Granier's Heat Dissipation Method and Heat Pulse Method (수액류 측정 데이터베이스: 그래니어(Granier) 센서 열손실탐침법(Heat Dissipation Method)과 열파동법(Heat Pulse Method)을 이용한 수액류 측정)

  • Lee, Minsu;Park, Juhan;Cho, Sungsik;Moon, Minkyu;Ryu, Daun;Lee, Hoontaek;Lee, Hojin;Kim, Sookyung;Kim, Taekyung;Byeon, Siyeon;Jeon, Jihyun;Bhusal, Narayan;Kim, Hyun Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.327-339
    • /
    • 2020
  • Transpiration is the movement of water into the atmosphere through leaf stomata of plant, and it accounts for more than half of evapotranspiration from the land surface. The measurements of transpiration could be conducted in various ways including eddy covariance and water balance method etc. However, the transpiration measurements of individual trees are necessary to quantify and compare the water use of each species and individual component within stands. For the measurement of the transpiration by individual tree, the thermometric methods such as heat dissipation and heat pulse methods are widely used. However, it is difficult and labor consuming to maintain the transpiration measurements of individual trees in a wide range area and especially for long-term experiment. Therefore, the sharing of sapflow data through database should be useful to promote the studies on transpiration and water balance for large spatial scale. In this paper, we present sap flow database, which have Granier type sap flux data from 18 Korean pine (Pinus koraiensis) since 2011 and 16 (Quercus aliena) since 2013 in Mt.Taehwa Seoul National University forest and 18 needle fir (Abies holophylla), seven (Quercus serrata), three (Carpinus laxiflora and C. cordata each since 2013 in Gwangneung. In addition, the database includes the sapling transpiration of nine species (Prunus sargentii, Larix kaempferii, Quercus accutisima, Pinus densiflora, Fraxinus rhynchophylla, Chamecypans obtuse, P. koraiensis, Betulla platyphylla, A. holophylla, Pinus thunbergii), which were measured using heat pulse method since 2018. We believe this is the first database to share the sapflux data in Rep. of Korea, and we wish our database to be used by other researchers and contribute a variety of researches in this field.

Establishment of A WebGIS-based Information System for Continuous Observation during Ocean Research Vessel Operation (WebGIS 기반 해양 연구선 상시관측 정보 체계 구축)

  • HAN, Hyeon-Gyeong;LEE, Cholyoung;KIM, Tae-Hoon;HAN, Jae-Rim;CHOI, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.40-53
    • /
    • 2021
  • Research vessels(R/Vs) used for ocean research move to the planned research area and perform ocean observations suitable for the research purpose. The five research vessels of the Korea Institute of Ocean Science & Technology(KIOST) are equipped with global positioning system(GPS), water depth, weather, sea surface layer temperature and salinity measurement equipment that can be observed at all times during cruise. An information platform is required to systematically manage and utilize the data produced through such continuous observation equipment. Therefore, the data flow was defined through a series of business analysis ranging from the research vessel operation plan to observation during the operation of the research vessel, data collection, data processing, data storage, display and service. After creating a functional design for each stage of the business process, KIOST Underway Meteorological & Oceanographic Information System(KUMOS), a Web-Geographic information system (Web-GIS) based information platform, was built. Since the data produced during the cruise of the R/Vs have characteristics of temporal and spatial variability, a quality management system was developed that considered these variabilities. For the systematic management and service of data, the KUMOS integrated Database(DB) was established, and functions such as R/V tracking, data display, search and provision were implemented. The dataset provided by KUMOS consists of cruise report, raw data, Quality Control(QC) flagged data, filtered data, cruise track line data, and data report for each cruise of the R/V. The business processing procedure and system of KUMOS for each function developed through this study are expected to serve as a benchmark for domestic ocean-related institutions and universities that have research vessels capable of continuous observations during cruise.

Spectral Induced Polarization Characteristics of Rocks in Gwanin Vanadiferous Titanomagnetite (VTM) Deposit (관인 함바나듐 티탄철광상 암석의 광대역 유도분극 특성)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.194-201
    • /
    • 2021
  • Induced polarization (IP) effect is known to be caused by electrochemical phenomena at interface between minerals and pore water. Spectral induced polarization (SIP) method is an electrical survey to localize subsurface IP anomalies while injecting alternating currents of multiple frequencies into the ground. This method was effectively applied to mineral exploration of various ore deposits. Titanomagnetite ores were being produced by a mining company located in Gonamsan area, Gwanin-myeon, Pocheon-si, Gyeonggi-do, South Korea. Because the ores contain more than 0.4 w% vanadium, the ore deposit is called as Gwanin vanadiferous titanomagnetite (VTM) deposit. The vanadium is the most important of materials in production of vanadium redox flow batteries, which can be appropriately used for large-scale energy storage system. Systematic mineral exploration was conducted to identify presence of hidden VTM orebodies and estimate their potential resources. In geophysical exploration, laboratory geophysical measurement of rock samples is helpful to generate reliable property models from field survey data. Therefore, we performed laboratory SIP data of the rocks from the Gwanin VTM deposit to understand SIP characteristics between ores and host rocks and then demonstrate the applicability of this method for the mineral exploration. Both phase and resistivity spectra of the ores sampled from underground outcrop and drilling cores were different of those of the host rocks consisting of monzodiorite and quartz monzodiorite. Because the phase and resistivity at frequencies below 100 Hz are mainly dependent on the SIP characteristics of the rocks, we calculated mean values of the ores and the host rocks. The average phase values at 0.1 Hz were ores: -369 mrad and host rocks: -39 mrad. The average resistivity values at 0.1 Hz were ores: 16 Ωm and host rocks: 2,623 Ωm. Because the SIP characteristics of the ores were different of those of the host rocks, we considered that the SIP survey is effective for the mineral exploration in vanadiferous titanomagnetite deposits and the SIP characteristics are useful for interpreting field survey data.

Extraction and Analysis of Ganghwa Tidal Flat Channels Using TanDEM-X DEM (TanDEM-X DEM을 이용한 강화도 갯벌 조류로 추출과 분석)

  • Yun, Ga-Ram;Kim, Lyn;Kim, Nam-Yeong;Kim, Na-Gyeong;Jang, Yun-Yeong;Choi, Yeong-Jin;Lee, Seung-Kuk
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.411-420
    • /
    • 2022
  • Recently, research using remote sensing has been active in various fields such as environment, science, and society. The results of research using remote sensing are not only numerical results, but also play an important role in solving and preventing social and scientific problems. The purpose of this thesis is to tell the correlation between the data provided and each data by using remote sensing technology for the tidal flat environment. The purpose of this study is to obtain high-resolution data using artificial satellites during remote sensing to find out information on tidal flat currents. Tidal flats created by erosion, sedimentation, low tide, and high tide contain information about the tidal flat slope and information about the ecosystem. Therefore, it can be considered as one of the very important studies to analyze the overall tidal flow channel. This paper creates a DEM (Digital Elevation Model) through TanDEM-X, and DEM is used as the most basic data to create a tidal channel. The research area is a tidal flat located in the middle of the west coast of Ganghwado tidal flat. By analyzing the tidal channel created, various information such as the slope direction of Ganghwado tidal flat and the shape of the tidal channel can be grasped. It is expected that the results of this study will increase the importance and necessity of using DEM data for tidal flat research in the future, and that high-quality results can be obtained.

Forward Osmotic Pressure-Free (△𝜋≤0) Reverse Osmosis and Osmotic Pressure Approximation of Concentrated NaCl Solutions (정삼투-무삼투압차(△𝜋≤0) 법 역삼투 해수 담수화 및 고농도 NaCl 용액의 삼투압 근사식)

  • Chang, Ho Nam;Choi, Kyung-Rok;Jung, Kwonsu;Park, Gwon Woo;Kim, Yeu-Chun;Suh, Charles;Kim, Nakjong;Kim, Do Hyun;Kim, Beom Su;Kim, Han Min;Chang, Yoon-Seok;Kim, Nam Uk;Kim, In Ho;Kim, Kunwoo;Lee, Habit;Qiang, Fei
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.235-252
    • /
    • 2022
  • Forward osmotic pressure-free reverse osmosis (Δ𝜋=0 RO) was invented in 2013. The first patent (US 9,950,297 B2) was registered on April 18, 2018. The "Osmotic Pressure of Concentrated Solutions" in JACS (1908) by G.N. Lewis of MIT was used for the estimation. The Chang's RO system differs from conventional RO (C-RO) in that two-chamber system of osmotic pressure equalizer and a low-pressure RO system while C-RO is based on a single chamber. Chang claimed that all aqueous solutions, including salt water, regardless of its osmotic pressure can be separated into water and salt. The second patent (US 10.953.367B2, March 23, 2021) showed that a low-pressure reverse osmosis is possible for 3.0% input at Δ𝜋 of 10 to 12 bar. Singularity ZERO reverse osmosis from his third patent (Korea patent 10-22322755, US-PCT/KR202003595) for a 3.0% NaCl input, 50% more water recovery, use of 1/3 RO membrane area, and 1/5th of theoretical energy. These numbers come from Chang's laboratory experiments and theoretical analysis. Relative residence time (RRT) of feed and OE chambers makes Δ𝜋 to zero or negative by recycling enriched feed flow. The construction cost by S-ZERO was estimated to be around 50~60% of the current RO system.

A Study on the Fengshui Shapes of the Four Propitious Sites Recorded in The Canonical Scripture (『전경』에 기록된 사명당(四明堂)의 풍수 물형(物形) 연구)

  • Shin Young-dae
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.41
    • /
    • pp.133-178
    • /
    • 2022
  • This study investigates if four propitious sites (四明堂, sa myeongdang) identified in Daesoon Jinrihoe's The Canonical Scripture correspond with the orthodox descriptions of dragon, energy hub, sand, and water (龍穴砂水, yong hyeol sa su) which are held by Fengshui as conditions necessary for that specific designation. In this study, these conditions, based on the shape of the site-formations, were observed via through on-site surveys and the application of the theories presented by traditional books on Fengshui. First, the dragon veins (龍脈, yongmaek) of the energy hub of the Five Immortals Playing Baduk (五仙圍碁穴 oseonwigi- hyeol) on Mount Hoemun in Sunchang consists of solid soil, is like a spiderweb, rises and lays prone, winds in every direction, and looks almost disconnected while actually remaining connected. Second, the Fengshui characteristics of the energy hub of Worship Held by Buddhist Monks from Abroad (胡僧禮佛穴, hoseungyebul- hyeol) on Mount Seungdal in Muan is that the branching feet (枝脚 jigak) support the mountain range by forming a valley to the left and right of the dragon veins that stretch from the peak of Mount Seungdal. Also, the direction-changing helm (橈棹 yodo) supports the mountain range solidly can be said to be well-developed. It is likewise noted that there is an excellent change in dragon veins in that exhibit curvature that spans being high, low, rising, and lying. This makes it appear as though the dragon is wriggling back and forth. Third, the state of the energy hub of Celestial Maidens Weaving Silk (仙女織錦穴, seonnyojikgeum-hyeol) on Sonryong Ridge in Jangseong County demonstrates overall harmony between mountain and water as it is near Mount Ju and Mount An and has a solid water outlet to which it is tightly fastened such that its energy does not leak out. Meanwhile, the positioning of its blue dragon of the east, red phoenix of the south, white tiger of the west, and black tortoise of the north is so intimate that its long flow can be said to be spinning. The Songryong Ridge area where energy hub was formed between soil and bedrock is the right land for a great favored location as it corresponds with Fengshui logic in an exemplary manner. Fourth, the Fengshui characteristics of the energy hub of Subjects Receiving the Imperial Command (群臣奉詔穴, gunshinbongjo-hyeol) at Baerye-jeon Field in Taein can be described as embracing the village snuggly as it centers around Mount Wangja, and its blue dragon and white tiger respond to each other. Additionally, a clear distinction between host and guest is noticeable in the positions of Mount Ju and Mount An. The flowing body of water in front of the village wraps around that village as a Horizontal Water Formation (橫水局, hoengsuguk), and vigorous vapor from the earth draws breath as the yin-yang energy of the landscape courses through the earth. As dragon veins, the range of the mountain, are like the blood vessels within the human body and the dragon is compared to the limbs, the energy hub of Subjects Receiving the Imperial Command at Baerye-jeon Field in Taein can be identified as a favored location that was formed directly by the sky and earth.

Vegetation classification based on remote sensing data for river management (하천 관리를 위한 원격탐사 자료 기반 식생 분류 기법)

  • Lee, Chanjoo;Rogers, Christine;Geerling, Gertjan;Pennin, Ellis
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.6-7
    • /
    • 2021
  • Vegetation development in rivers is one of the important issues not only in academic fields such as geomorphology, ecology, hydraulics, etc., but also in river management practices. The problem of river vegetation is directly connected to the harmony of conflicting values of flood management and ecosystem conservation. In Korea, since the 2000s, the issue of river vegetation and land formation has been continuously raised under various conditions, such as the regulating rivers downstream of the dams, the small eutrophicated tributary rivers, and the floodplain sites for the four major river projects. In this background, this study proposes a method for classifying the distribution of vegetation in rivers based on remote sensing data, and presents the results of applying this to the Naeseong Stream. The Naeseong Stream is a representative example of the river landscape that has changed due to vegetation development from 2014 to the latest. The remote sensing data used in the study are images of Sentinel 1 and 2 satellites, which is operated by the European Aerospace Administration (ESA), and provided by Google Earth Engine. For the ground truth, manually classified dataset on the surface of the Naeseong Stream in 2016 were used, where the area is divided into eight types including water, sand and herbaceous and woody vegetation. The classification method used a random forest classification technique, one of the machine learning algorithms. 1,000 samples were extracted from 10 pre-selected polygon regions, each half of them were used as training and verification data. The accuracy based on the verification data was found to be 82~85%. The model established through training was also applied to images from 2016 to 2020, and the process of changes in vegetation zones according to the year was presented. The technical limitations and improvement measures of this paper were considered. By providing quantitative information of the vegetation distribution, this technique is expected to be useful in practical management of vegetation such as thinning and rejuvenation of river vegetation as well as technical fields such as flood level calculation and flow-vegetation coupled modeling in rivers.

  • PDF

End-use Analysis of Household Water by Metering (가정용수의 용도별 사용 원단위 분석)

  • Kim, Hwa Soo;Lee, Doo Jin;Kim, Ju Whan;Jung, Kwan Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.595-601
    • /
    • 2008
  • The purpose of this study is to investigate the trends and patterns of various kind of water uses in a household by metering in Korea. Water use components are classified by toilet, washbowl, bathing, laundry, kitchen, miscellaneous. Flow meters are installed in 140 household selected by sampling in all around Korea. The data are gathered by web-based data collection system from the year 2002 to 2006, considering pre-investigated data such as occupation, revenue, family members, housing types, age, floor area, water saving devices, education, miscellaneous. Reliable data are selected by upper fence method for each observed water use component and statistical characteristics are estimated for each residential type to determine liter per capita per day. Estimated domestic per capita day show an indoor water use with the range from 150 lpcd to 169 lpcd for each housing type as the order of high rise apartment, multi-house, and single house. As the order of consuming amount among water use components, it is investigated that toilet (38.5 lpcd) is the first, and the second is laundry water (30.8 lpcd), the third is kitchen (28.4 lpcd), the fourth is bathtub (24.7 lpcd), the next is washbowl (15.4 lpcd). The results are compared with water uses in U.K. and U.S. As life style has been changed into western style, pattern of water use in Korea is tend to be similar with the U.S. water use pattern. Compared with the surveying results by Bradley, on 1985. Thirty liter of total use increased with the advancement of economic level, and a little change of water use pattern can be found. Especially, toilet water take almost half part of total water use and laundry water shows lowest as 11% in surveying at the year of 1985. But, this study shows that 39 liter, 28% of toilet water, has been decreased by the spread of saving devices and campaign. It is supposed that the spread large sized laundry machine make by-hand laundry has been decreased and water use increased. Unit water amount of each end-use in household can be applied to design factor for water and wastewater facilities, and it play a role as information in establishing water demand forecasting and conservation policy.

Assessment of stream water quality and pollutant discharge loads affected by recycled irrigation in an agricultural watershed using HSPF and a multi-reservoir model (HSPF와 다중 저류지 모형을 이용한 농업지역 순환관개에 의한 하천 수질 및 배출부하 영향 분석)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2023
  • The recycled irrigation is a type of irrigation that uses downstream water to fulfill irrigation demand in the upstream agricultural areas; the used irrigation water returns back to the downstream. The recycled irrigation is advantageous for securing irrigation water for plant growth, but the returned water typically contains high levels of nutrients due to excess nutrients inputs during the agricultural activities, potentially deteriorating stream water quality. Therefore, quantitative assessment on the effect of the recycled irrigation on the stream water quality is required to establish strategies for effective irrigation water supply and water quality management. For this purpose, a watershed model is generally used; however no functions to simulate the effects of the recycled irrigation are provided in the existing watershed models. In this study, we used multi-reservoir model coupled with the Hydrological Simulation Program-Fortran (HSPF) to estimate the effect of the recycled irrigation on the stream water quality. The study area was the Gwangok stream watershed, a subwatershed of Gyeseong stream watershed in Changnyeong county, Gyeongsangnam-do. The HSPF model was built, calibrated, and used to produce time series data of flow and water quality, which were used as hypothetical observation data to calibrate the multi-reservoir model. The calibrated multi-reservoir model was used for simulating the recycled irrigation. In the multi-reservoir model, the Gwangok watershed consisted of two subsystems, irrigation and the Gwangok stream, and the reactions (plant uptake, adsorption, desorption, and decay) within each subsystem, and fluxes of water and materials between the subsystems, were modeled. Using the developed model, three scenarios with different combinations of the operating conditions of the recycled irrigation were evaluated for their effects on the stream water quality.

Determining Spatial and Temporal Variations of Surface Particulate Organic Carbon (POC) using in situ Measurements and Remote Sensing Data in the Northeastern Gulf of Mexico during El Nin~o and La Nin~a (현장관측 및 원격탐사 자료를 이용한 북동 멕시코 만에서 El Nin~o와 La Nin~a 기간 동안 표층 입자성 유기탄소의 시/공간적 변화 연구)

  • Son, Young-Baek;Gardner, Wilford D.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.51-61
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration was measured in the Northeastern Gulf of Mexico on 9 cruises from November 1997 to August 2000 to investigate the seasonal and spatial variability related to synchronous remote sensing data (Sea-viewing Wide Field-of-view Sensor (SeaWiFS), sea surface temperature (SST), sea surface height anomaly (SSHA), and sea surface wind (SSW)) and recorded river discharge data. Surface POC concentrations have higher values (>100 mg/m3) on the inner shelf and near the Mississippi Delta, and decrease across the shelf and slope. The inter-annual variations of surface POC concentrations are relatively higher during 1997 and 1998 (El Nino) than during 1999 and 2000 (La Nina) in the study area. This phenomenon is directly related to the output of Mississippi River and other major rivers, which associated with global climate change such as ENSO events. Although highest river runoff into the northern Gulf of Mexico Coast occurs in early spring and lowest flow in late summer and fall, wide-range POC plumes are observed during the summer cruises and lower concentrations and narrow dispersion of POC during the spring and fall cruises. During the summer seasons, the river discharge remarkably decreases compared to the spring, but increasing temperature causes strong stratification of the water column and increasing buoyancy in near-surface waters. Low-density plumes containing higher POC concentrations extend out over the shelf and slope with spatial patterns and controlled by the Loop Current and eddies, which dominate offshore circulation. Although river discharge is normal or abnormal during the spring and fall seasons, increasing wind stress and decreasing temperature cause vertical mixing, with higher surface POC concentrations confined to the inner shelf.